These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 37086734)
1. A Composite of Hierarchical Porous MOFs and Halloysite Nanotubes as Single-Ion-Conducting Electrolyte Toward High-Performance Solid-State Lithium-Ion Batteries. Tao F; Wang X; Jin S; Tian L; Liu Z; Kang X; Liu Z Adv Mater; 2023 Jul; 35(29):e2300687. PubMed ID: 37086734 [TBL] [Abstract][Full Text] [Related]
2. Ionic Liquid-Impregnated ZIF-8/Polypropylene Solid-like Electrolyte for Dendrite-free Lithium-Metal Batteries. Qi X; Cai D; Wang X; Xia X; Gu C; Tu J ACS Appl Mater Interfaces; 2022 Feb; 14(5):6859-6868. PubMed ID: 35080368 [TBL] [Abstract][Full Text] [Related]
3. High-Performance Metal-Organic Framework-Based Single Ion Conducting Solid-State Electrolytes for Low-Temperature Lithium Metal Batteries. Zhu F; Bao H; Wu X; Tao Y; Qin C; Su Z; Kang Z ACS Appl Mater Interfaces; 2019 Nov; 11(46):43206-43213. PubMed ID: 31651145 [TBL] [Abstract][Full Text] [Related]
4. Highly Stable Organic Molecular Porous Solid Electrolyte with One-Dimensional Ion Migration Channel for Solid-State Lithium-Oxygen Battery. Li JX; Guan DH; Wang XX; Miao CL; Li JY; Xu JJ Adv Mater; 2024 Jun; 36(23):e2312661. PubMed ID: 38290062 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of the Electrochemical Performances of Composite Solid-State Electrolytes by Doping with Graphene. Liang X; Huang D; Lan L; Yang G; Huang J Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145004 [TBL] [Abstract][Full Text] [Related]
6. ZIF-8@MXene-reinforced flame-retardant and highly conductive polymer composite electrolyte for dendrite-free lithium metal batteries. Zhao X; Zhu M; Tang C; Quan K; Tong Q; Cao H; Jiang J; Yang H; Zhang J J Colloid Interface Sci; 2022 Aug; 620():478-485. PubMed ID: 35452945 [TBL] [Abstract][Full Text] [Related]
7. Regulating Metal Centers of MOF-74 Promotes PEO-Based Electrolytes for All-Solid-State Lithium-Metal Batteries. Wu J; Ma Y; Zhang H; Xie H; Hu J; Shi C; Chen B; He C; Zhao N ACS Appl Mater Interfaces; 2024 Apr; 16(13):16351-16362. PubMed ID: 38515323 [TBL] [Abstract][Full Text] [Related]
8. ZIF-8-Based Quasi-Solid-State Electrolyte for Lithium Batteries. Sun C; Zhang JH; Yuan XF; Duan JN; Deng SW; Fan JM; Chang JK; Zheng MS; Dong QF ACS Appl Mater Interfaces; 2019 Dec; 11(50):46671-46677. PubMed ID: 31738039 [TBL] [Abstract][Full Text] [Related]
9. Significantly enhanced lithium-ion conductivity of solid-state electrolytes Wang X; Tian L; Tao F; Liu M; Jin S; Liu Z Dalton Trans; 2023 Jul; 52(29):10222-10230. PubMed ID: 37436096 [TBL] [Abstract][Full Text] [Related]
10. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries. Wu Z; Yi Y; Hai F; Tian X; Zheng S; Guo J; Tang W; Hua W; Li M ACS Appl Mater Interfaces; 2023 May; 15(18):22065-22074. PubMed ID: 37122124 [TBL] [Abstract][Full Text] [Related]
11. "Tree-Trunk" Design for Flexible Quasi-Solid-State Electrolytes with Hierarchical Ion-Channels Enabling Ultralong-Life Lithium-Metal Batteries. Zheng Y; Yang N; Gao R; Li Z; Dou H; Li G; Qian L; Deng Y; Liang J; Yang L; Liu Y; Ma Q; Luo D; Zhu N; Li K; Wang X; Chen Z Adv Mater; 2022 Nov; 34(44):e2203417. PubMed ID: 35901220 [TBL] [Abstract][Full Text] [Related]
12. Novel In Situ Growth of ZIF-8 in Porous Epoxy Matrix for Mechanically Robust Composite Electrolyte of High-Performance, Long-Life Lithium Metal Batteries. Zhang W; Long J; Wang H; Lan J; Yu Y; Yang X Molecules; 2022 Nov; 27(21):. PubMed ID: 36364315 [TBL] [Abstract][Full Text] [Related]
13. Enhanced ionic conductivity in halloysite nanotube-poly(vinylidene fluoride) electrolytes for solid-state lithium-ion batteries. Lun P; Chen Z; Zhang Z; Tan S; Chen D RSC Adv; 2018 Oct; 8(60):34232-34240. PubMed ID: 35548647 [TBL] [Abstract][Full Text] [Related]
14. A polyethylene oxide/metal-organic framework composite solid electrolyte with uniform Li deposition and stability for lithium anode by immobilizing anions. Dong R; Zheng J; Yuan J; Li Y; Zhang T; Liu Y; Liu Y; Sun Y; Zhong B; Chen Y; Wu Z; Guo X J Colloid Interface Sci; 2022 Aug; 620():47-56. PubMed ID: 35405565 [TBL] [Abstract][Full Text] [Related]
15. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Wu JF; Guo X Small; 2019 Feb; 15(5):e1804413. PubMed ID: 30624013 [TBL] [Abstract][Full Text] [Related]
16. High-Rate Solid Polymer Electrolyte Based Flexible All-Solid-State Lithium Metal Batteries. Wang Z; Ma J; Cui P; Yao X ACS Appl Mater Interfaces; 2022 Aug; 14(30):34649-34655. PubMed ID: 35853197 [TBL] [Abstract][Full Text] [Related]
17. Advanced Nanoclay-Based Nanocomposite Solid Polymer Electrolyte for Lithium Iron Phosphate Batteries. Zhu Q; Wang X; Miller JD ACS Appl Mater Interfaces; 2019 Mar; 11(9):8954-8960. PubMed ID: 30724067 [TBL] [Abstract][Full Text] [Related]
18. Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries. Yuan H; Luan J; Yang Z; Zhang J; Wu Y; Lu Z; Liu H ACS Appl Mater Interfaces; 2020 Feb; 12(6):7249-7256. PubMed ID: 31916745 [TBL] [Abstract][Full Text] [Related]
19. Three-Dimensional Metal-Organic Framework@Cellulose Skeleton-Reinforced Composite Polymer Electrolyte for All-Solid-State Lithium Metal Battery. Song X; Ma K; Wang J; Wang H; Xie H; Zheng Z; Zhang J ACS Nano; 2024 May; 18(19):12311-12324. PubMed ID: 38691642 [TBL] [Abstract][Full Text] [Related]
20. Rational Design of Ion Transport Paths at the Interface of Metal-Organic Framework Modified Solid Electrolyte. Xia Y; Xu N; Du L; Cheng Y; Lei S; Li S; Liao X; Shi W; Xu L; Mai L ACS Appl Mater Interfaces; 2020 May; 12(20):22930-22938. PubMed ID: 32348110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]