These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37086958)

  • 1. Left ventricle segmentation combining deep learning and deformable models with anatomical constraints.
    A O Ribeiro M; L S Nunes F
    J Biomed Inform; 2023 Jun; 142():104366. PubMed ID: 37086958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data augmentation approach to train fully convolutional networks for left ventricle segmentation.
    Lin A; Wu J; Yang X
    Magn Reson Imaging; 2020 Feb; 66():152-164. PubMed ID: 31476360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac MR segmentation based on sequence propagation by deep learning.
    Luo C; Shi C; Li X; Gao D
    PLoS One; 2020; 15(4):e0230415. PubMed ID: 32271777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multi-channel Deep Learning Approach for Segmentation of the Left Ventricular Endocardium from Cardiac Images.
    Yang X; Su Y; Tjio G; Yang F; Ding J; Kumar S; Leng S; Zhao X; Tan RS; Zhong L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4016-4019. PubMed ID: 31946752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Learning Segmentation Approach in Free-Breathing Real-Time Cardiac Magnetic Resonance Imaging.
    Yang F; Zhang Y; Lei P; Wang L; Miao Y; Xie H; Zeng Z
    Biomed Res Int; 2019; 2019():5636423. PubMed ID: 31467898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies of deep learning segmentation models for left ventricle segmentation.
    Shoaib MA; Lai KW; Chuah JH; Hum YC; Ali R; Dhanalakshmi S; Wang H; Wu X
    Front Public Health; 2022; 10():981019. PubMed ID: 36091529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.
    Avendi MR; Kheradvar A; Jafarkhani H
    Med Image Anal; 2016 May; 30():108-119. PubMed ID: 26917105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A U-snake based deep learning network for right ventricle segmentation.
    Huang K; Xu L; Zhu Y; Meng P
    Med Phys; 2022 Jun; 49(6):3900-3913. PubMed ID: 35302251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cine MRI analysis by deep learning of optical flow: Adding the temporal dimension.
    Yan W; Wang Y; van der Geest RJ; Tao Q
    Comput Biol Med; 2019 Aug; 111():103356. PubMed ID: 31323604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic deep learning-based myocardial infarction segmentation from delayed enhancement MRI.
    Chen Z; Lalande A; Salomon M; Decourselle T; Pommier T; Qayyum A; Shi J; Perrot G; Couturier R
    Comput Med Imaging Graph; 2022 Jan; 95():102014. PubMed ID: 34864579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automated intracardiac 4D flow MRI post-processing using deep learning for biventricular segmentation.
    Corrado PA; Wentland AL; Starekova J; Dhyani A; Goss KN; Wieben O
    Eur Radiol; 2022 Aug; 32(8):5669-5678. PubMed ID: 35175379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a Semi-automatic Right Ventricle Segmentation Method on Short-Axis MR Images.
    Yilmaz P; Wallecan K; Kristanto W; Aben JP; Moelker A
    J Digit Imaging; 2018 Oct; 31(5):670-679. PubMed ID: 29524154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images.
    Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J
    Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dilated-Inception Net: Multi-Scale Feature Aggregation for Cardiac Right Ventricle Segmentation.
    Li J; Yu ZL; Gu Z; Liu H; Li Y
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3499-3508. PubMed ID: 30932820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology.
    Clough JR; Byrne N; Oksuz I; Zimmer VA; Schnabel JA; King AP
    IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):8766-8778. PubMed ID: 32886606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression.
    Tan LK; McLaughlin RA; Lim E; Abdul Aziz YF; Liew YM
    J Magn Reson Imaging; 2018 Jul; 48(1):140-152. PubMed ID: 29316024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MFP-Unet: A novel deep learning based approach for left ventricle segmentation in echocardiography.
    Moradi S; Oghli MG; Alizadehasl A; Shiri I; Oveisi N; Oveisi M; Maleki M; Dhooge J
    Phys Med; 2019 Nov; 67():58-69. PubMed ID: 31671333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained-CNN losses for weakly supervised segmentation.
    Kervadec H; Dolz J; Tang M; Granger E; Boykov Y; Ben Ayed I
    Med Image Anal; 2019 May; 54():88-99. PubMed ID: 30851541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images.
    Abdeltawab H; Khalifa F; Taher F; Alghamdi NS; Ghazal M; Beache G; Mohamed T; Keynton R; El-Baz A
    Comput Med Imaging Graph; 2020 Apr; 81():101717. PubMed ID: 32222684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.