These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 37087201)
1. Effects of various thermal treatments on interfacial composition and physical properties of bovine milk fat globules. Huang Y; Wei T; Chen F; Tan C; Gong Z; Wang F; Deng Z; Li J Food Res Int; 2023 May; 167():112580. PubMed ID: 37087201 [TBL] [Abstract][Full Text] [Related]
2. Goat α(s1)-casein genotype affects milk fat globule physicochemical properties and the composition of the milk fat globule membrane. Cebo C; Lopez C; Henry C; Beauvallet C; Ménard O; Bevilacqua C; Bouvier F; Caillat H; Martin P J Dairy Sci; 2012 Nov; 95(11):6215-29. PubMed ID: 22921619 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of interfacial properties and thermal behaviour of milk fat globules and membrane prepared from ultrasonicated bovine milk. Sun Y; Roos YH; Miao S Ultrason Sonochem; 2024 Jan; 102():106755. PubMed ID: 38219547 [TBL] [Abstract][Full Text] [Related]
4. Lipid droplets coated with milk fat globule membrane fragments: Microstructure and functional properties as a function of pH. Lopez C; Cauty C; Rousseau F; Blot M; Margolis A; Famelart MH Food Res Int; 2017 Jan; 91():26-37. PubMed ID: 28290324 [TBL] [Abstract][Full Text] [Related]
5. Milk fat globule membrane proteins are involved in controlling the size of milk fat globules during conjugated linoleic acid-induced milk fat depression. Huang QX; Yang J; Hu M; Lu W; Zhong K; Wang Y; Yang G; Loor JJ; Han L J Dairy Sci; 2022 Nov; 105(11):9179-9190. PubMed ID: 36175227 [TBL] [Abstract][Full Text] [Related]
6. New insights into the destabilization of fat globules in ultra-instantaneous UHT milk induced by added plasmin: Molecular mechanisms and the effect of membrane structure on plasmin action. Wang Y; Guo M; Wu P; Fan K; Zhang W; Chen C; Ren F; Wang P; Luo J; Yu J Colloids Surf B Biointerfaces; 2024 Aug; 240():113987. PubMed ID: 38795586 [TBL] [Abstract][Full Text] [Related]
7. Characterization of difference in structure and function of fresh and mastitic bovine milk fat globules. Verma A; Ghosh T; Bhushan B; Packirisamy G; Navani NK; Sarangi PP; Ambatipudi K PLoS One; 2019; 14(8):e0221830. PubMed ID: 31465429 [TBL] [Abstract][Full Text] [Related]
8. Impact of industrial cream heat treatments on the protein composition of the milk fat globule membrane. Hansen SF; Petrat-Melin B; Rasmusen JT; Larsen LB; Wiking L J Dairy Res; 2020 Feb; 87(1):89-93. PubMed ID: 32026791 [TBL] [Abstract][Full Text] [Related]
9. Changes in milk fat globule membrane proteome after pasteurization in human, bovine and caprine species. Ma Y; Zhang L; Wu Y; Zhou P Food Chem; 2019 May; 279():209-215. PubMed ID: 30611482 [TBL] [Abstract][Full Text] [Related]
10. Changes in bovine milk fat globule membrane proteins caused by heat procedures using a label-free proteomic approach. Yang Y; Zheng N; Zhao X; Yang J; Zhang Y; Han R; Qi Y; Zhao S; Li S; Wen F; Guo T; Zang C; Wang J Food Res Int; 2018 Nov; 113():1-8. PubMed ID: 30195502 [TBL] [Abstract][Full Text] [Related]
11. Lipid rafts may affect the coalescence of milk fat globules through phase transition after thermal treatment. Wei T; Huang Y; Weng C; Chen F; Tan C; Liu W; Deng Z; Li J Food Chem; 2023 Jan; 399():133867. PubMed ID: 35994856 [TBL] [Abstract][Full Text] [Related]
12. Human milk fat globules: polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Lopez C; Ménard O Colloids Surf B Biointerfaces; 2011 Mar; 83(1):29-41. PubMed ID: 21126862 [TBL] [Abstract][Full Text] [Related]
13. Omics analysis reveals variations among commercial sources of bovine milk fat globule membrane. Brink LR; Herren AW; McMillen S; Fraser K; Agnew M; Roy N; Lönnerdal B J Dairy Sci; 2020 Apr; 103(4):3002-3016. PubMed ID: 32037171 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of milk fat globule membranes from small-sized milk fat globules and their function in promoting lipid droplet fusion in bovine mammary epithelial cells. Han L; Huang Q; Yang J; Lu W; Hu M; Yang Y; Zhu H; Pang K; Yang G Food Funct; 2023 Mar; 14(5):2304-2312. PubMed ID: 36752527 [TBL] [Abstract][Full Text] [Related]
15. Variation in milk fat globule size and composition: A source of bioactives for human health. Thum C; Roy NC; Everett DW; McNabb WC Crit Rev Food Sci Nutr; 2023; 63(1):87-113. PubMed ID: 34190660 [TBL] [Abstract][Full Text] [Related]
16. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. Gallier S; Gragson D; Jiménez-Flores R; Everett D J Agric Food Chem; 2010 Apr; 58(7):4250-7. PubMed ID: 20218614 [TBL] [Abstract][Full Text] [Related]
17. Ultrasound modification on milk fat globule membrane and soy lecithin to improve the physicochemical properties, microstructure and stability of mimicking human milk fat emulsions. Ma Q; Zhou T; Wang Z; Zhao Y; Li X; Liu L; Zhang X; Kouame KJE; Chen S Ultrason Sonochem; 2024 May; 105():106873. PubMed ID: 38608436 [TBL] [Abstract][Full Text] [Related]
19. Milk fat globule membrane in infant nutrition: a dairy industry perspective. Silva RCD; Colleran HL; Ibrahim SA J Dairy Res; 2021 Feb; 88(1):105-116. PubMed ID: 33722311 [TBL] [Abstract][Full Text] [Related]
20. The protein and lipid composition of the membrane of milk fat globules depends on their size. Lu J; Argov-Argaman N; Anggrek J; Boeren S; van Hooijdonk T; Vervoort J; Hettinga KA J Dairy Sci; 2016 Jun; 99(6):4726-4738. PubMed ID: 26995123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]