These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37087234)

  • 21. Interaction between Tea Polyphenols and Bile Acid Inhibits Micellar Cholesterol Solubility.
    Ogawa K; Hirose S; Nagaoka S; Yanase E
    J Agric Food Chem; 2016 Jan; 64(1):204-9. PubMed ID: 26651358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of novel cationic bile salts in cholesterol crystallization and solubilization in vitro.
    Bhat S; Leikin-Gobbi D; Konikoff FM; Maitra U
    Biochim Biophys Acta; 2006 Oct; 1760(10):1489-96. PubMed ID: 16919881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of cholesterol absorption in rats by plant sterols.
    Ikeda I; Tanaka K; Sugano M; Vahouny GV; Gallo LL
    J Lipid Res; 1988 Dec; 29(12):1573-82. PubMed ID: 2468730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enlargement of taurocholate micelles by added cholesterol and monoolein: self-diffusion measurements.
    Woodford FP
    J Lipid Res; 1969 Sep; 10(5):539-45. PubMed ID: 5808827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Surfactant-Bile Interactions on the Solubility of Hydrophobic Drugs in Biorelevant Dissolution Media.
    Vinarov Z; Katev V; Burdzhiev N; Tcholakova S; Denkov N
    Mol Pharm; 2018 Dec; 15(12):5741-5753. PubMed ID: 30351956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine.
    Kobayashi M; Nishizawa M; Inoue N; Hosoya T; Yoshida M; Ukawa Y; Sagesaka YM; Doi T; Nakayama T; Kumazawa S; Ikeda I
    J Agric Food Chem; 2014 Apr; 62(13):2881-90. PubMed ID: 24628603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of cholesterol solubilized in bile salt micellar aqueous solutions using (13)C nuclear magnetic resonance.
    Coreta-Gomes FM; Vaz WL; Wasielewski E; Geraldes CF; Moreno MJ
    Anal Biochem; 2012 Aug; 427(1):41-8. PubMed ID: 22569559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aqueous bile salt-lecithin-cholesterol systems: equilibrium aspects.
    Carey MC
    Hepatology; 1984; 4(5 Suppl):151S-154S. PubMed ID: 6479872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of sitosterol and sitostanol on micellar solubility of cholesterol.
    Ikeda I; Tanabe Y; Sugano M
    J Nutr Sci Vitaminol (Tokyo); 1989 Aug; 35(4):361-9. PubMed ID: 2585153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors affecting intestinal absorption of cholesterol and plant sterols and stanols.
    Ikeda I
    J Oleo Sci; 2015; 64(1):9-18. PubMed ID: 25742922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Head group-independent interaction of phospholipids with bile salts. A fluorescence and EPR study.
    Wüstner D; Herrmann A; Müller P
    J Lipid Res; 2000 Mar; 41(3):395-404. PubMed ID: 10706587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micelle formation of sodium chenodeoxycholate and solubilization into the micelles: comparison with other unconjugated bile salts.
    Ninomiya R; Matsuoka K; Moroi Y
    Biochim Biophys Acta; 2003 Nov; 1634(3):116-25. PubMed ID: 14643799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative effects of cholic, chenodeoxycholic, and ursodeoxycholic acids on micellar solubilization and intestinal absorption of cholesterol.
    Reynier MO; Montet JC; Gerolami A; Marteau C; Crotte C; Montet AM; Mathieu S
    J Lipid Res; 1981 Mar; 22(3):467-73. PubMed ID: 7240971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competitive solubilization of cholesterol and phytosterols in nonionic microemulsions.
    Rozner S; Aserin A; Wachtel EJ; Garti N
    J Colloid Interface Sci; 2007 Oct; 314(2):718-26. PubMed ID: 17673247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mixed micelle properties and intestinal cholesterol uptake.
    Montet JC; Lindheimer M; Reynier MO; Crotte C; Bontemps R; Gerolami A
    Biochimie; 1982 Apr; 64(4):255-61. PubMed ID: 7093350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates.
    Carey MC; Montet JC; Phillips MC; Armstrong MJ; Mazer NA
    Biochemistry; 1981 Jun; 20(12):3637-48. PubMed ID: 7260061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemometric and conformational approach to the analysis of the aggregation capabilities in a set of bile salts of the allo and normal series.
    Poša M; Sebenji A
    J Pharm Biomed Anal; 2016 Mar; 121():316-324. PubMed ID: 26746785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of bile salts on molecular interactions between sphingomyelin and cholesterol: relevance to bile formation and stability.
    van Erpecum KJ; Carey MC
    Biochim Biophys Acta; 1997 Apr; 1345(3):269-82. PubMed ID: 9150247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile.
    Donovan JM; Timofeyeva N; Carey MC
    J Lipid Res; 1991 Sep; 32(9):1501-12. PubMed ID: 1753218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the mechanism of cholesterol uptake and on the effects of bile salts on this uptake by brush-border membranes isolated from rabbit small intestine.
    Proulx P; Aubry H; Brglez I; Williamson DG
    Biochim Biophys Acta; 1984 Dec; 778(3):586-93. PubMed ID: 6509054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.