BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37087525)

  • 1. Comparison Between Simultaneous and Sequential Utilization of Safety and Efficacy for Optimal Dose Determination in Bayesian Model-Assisted Designs.
    Li R; Takeda K; Rong A
    Ther Innov Regul Sci; 2023 Jul; 57(4):728-736. PubMed ID: 37087525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TITE-BOIN-ET: Time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes.
    Takeda K; Morita S; Taguri M
    Pharm Stat; 2020 May; 19(3):335-349. PubMed ID: 31829517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BOIN-ET: Bayesian optimal interval design for dose finding based on both efficacy and toxicity outcomes.
    Takeda K; Taguri M; Morita S
    Pharm Stat; 2018 Jul; 17(4):383-395. PubMed ID: 29700965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TITE-gBOIN-ET: Time-to-event generalized Bayesian optimal interval design to accelerate dose-finding accounting for ordinal graded efficacy and toxicity outcomes.
    Takeda K; Yamaguchi Y; Taguri M; Morita S
    Biom J; 2023 Oct; 65(7):e2200265. PubMed ID: 37309248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gBOIN-ET: The generalized Bayesian optimal interval design for optimal dose-finding accounting for ordinal graded efficacy and toxicity in early clinical trials.
    Takeda K; Morita S; Taguri M
    Biom J; 2022 Oct; 64(7):1178-1191. PubMed ID: 35561046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Introduction of Oncology Dose-Finding Trial Designs].
    Takeda K
    Gan To Kagaku Ryoho; 2022 Apr; 49(4):365-370. PubMed ID: 35444116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian optimal interval design for dose optimization with a randomization scheme based on pharmacokinetics outcomes in oncology.
    Takeda K; Zhu J; Li R; Yamaguchi Y
    Pharm Stat; 2023; 22(6):1104-1115. PubMed ID: 37545018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive design for identifying maximum tolerated dose early to accelerate dose-finding trial.
    Kojima M
    BMC Med Res Methodol; 2022 Apr; 22(1):97. PubMed ID: 35382745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian dose-finding phase I trial design incorporating pharmacokinetic assessment in the field of oncology.
    Takeda K; Komatsu K; Morita S
    Pharm Stat; 2018 Nov; 17(6):725-733. PubMed ID: 30066356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian optimization design for dose-finding based on toxicity and efficacy outcomes in phase I/II clinical trials.
    Takahashi A; Suzuki T
    Pharm Stat; 2021 May; 20(3):422-439. PubMed ID: 33258282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design considerations for phase I/II dose finding clinical trials in Immuno-oncology and cell therapy.
    Liu R; Lin J; Li P
    Contemp Clin Trials; 2020 Sep; 96():106083. PubMed ID: 32659438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BOIN-ETC: A Bayesian optimal interval design considering efficacy and toxicity to identify the optimal dose combinations.
    Kakizume T; Takeda K; Taguri M; Morita S
    Stat Methods Med Res; 2024 Apr; 33(4):716-727. PubMed ID: 38444354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating historical information to improve dose optimization design with toxicity and efficacy endpoints: iBOIN-ET.
    Zhao Y; Liu R; Takeda K
    Pharm Stat; 2023; 22(3):440-460. PubMed ID: 36514849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shotgun: A Bayesian seamless phase I-II design to accelerate the development of targeted therapies and immunotherapy.
    Jiang L; Li R; Yan F; Yap TA; Yuan Y
    Contemp Clin Trials; 2021 May; 104():106338. PubMed ID: 33711459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phase I/II seamless dose escalation/expansion with adaptive randomization scheme (SEARS).
    Pan H; Xie F; Liu P; Xia J; Ji Y
    Clin Trials; 2014 Feb; 11(1):49-59. PubMed ID: 24137041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials.
    Lin R; Yin G
    Stat Med; 2017 Nov; 36(26):4106-4120. PubMed ID: 28786138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential or combined designs for Phase I/II clinical trials? A simulation study.
    Rossoni C; Bardet A; Geoerger B; Paoletti X
    Clin Trials; 2019 Dec; 16(6):635-644. PubMed ID: 31538815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian adaptive Phase I-II clinical trial for evaluating efficacy and toxicity with delayed outcomes.
    Koopmeiners JS; Modiano J
    Clin Trials; 2014 Feb; 11(1):38-48. PubMed ID: 24082004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving early phase oncology clinical trial design: The case for finding the optimal biological dose.
    Phillips A; Mondal S
    Pharm Stat; 2023; 22(4):739-747. PubMed ID: 36669771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Bayesian hierarchical models for phase I/II clinical trials in oncology.
    Yada S; Hamada C
    Pharm Stat; 2017 Mar; 16(2):114-121. PubMed ID: 27892650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.