These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37087662)

  • 41. Would future climate warming cause zoonotic diseases to spread over long distances?
    Bu F; Yue X; Sun S; Jin Y; Li L; Li X; Zhang R; Shang Z; Yan H; Zhang H; Yuan S; Wu X; Fu H
    PeerJ; 2024; 12():e16811. PubMed ID: 38406275
    [No Abstract]   [Full Text] [Related]  

  • 42. Genomic analysis of demographic history and ecological niche modeling in the endangered Chinese Grouse Tetrastes sewerzowi.
    Song K; Gao B; Halvarsson P; Fang Y; Jiang YX; Sun YH; Höglund J
    BMC Genomics; 2020 Aug; 21(1):581. PubMed ID: 32847513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Climatic-Induced Shifts in the Distribution of Teak (Tectona grandis) in Tropical Asia: Implications for Forest Management and Planning.
    Deb JC; Phinn S; Butt N; McAlpine CA
    Environ Manage; 2017 Sep; 60(3):422-435. PubMed ID: 28474209
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Potential geographic distribution of relict plant Pteroceltis tatarinowii in China under climate change scenarios.
    Yang J; Jiang P; Huang Y; Yang Y; Wang R; Yang Y
    PLoS One; 2022; 17(4):e0266133. PubMed ID: 35395025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How can dry tropical forests respond to climate change? Predictions for key Non-Timber Forest Product species show different trends in India.
    Saraf PN; Srivastava J; Munoz F; Charles B; Samal P
    Environ Monit Assess; 2024 Jul; 196(8):727. PubMed ID: 38995471
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming.
    Ren Z; Zagortchev L; Ma J; Yan M; Li J
    BMC Ecol; 2020 May; 20(1):28. PubMed ID: 32386506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting the impacts of climate change, soils and vegetation types on the geographic distribution of Polyporus umbellatus in China.
    Guo Y; Li X; Zhao Z; Nawaz Z
    Sci Total Environ; 2019 Jan; 648():1-11. PubMed ID: 30103037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting the changes in suitable habitats for six common woody species in Central Asia.
    Tao Z
    Int J Biometeorol; 2023 Jan; 67(1):107-119. PubMed ID: 36269447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios.
    Singh L; Kanwar N; Bhatt ID; Nandi SK; Bisht AK
    PLoS One; 2022; 17(6):e0269673. PubMed ID: 35714160
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporating Local Adaptation Into Species Distribution Modeling of
    Chen Q; Yin Y; Zhao R; Yang Y; Teixeira da Silva JA; Yu X
    Front Plant Sci; 2019; 10():1717. PubMed ID: 32047503
    [No Abstract]   [Full Text] [Related]  

  • 51. Geographic distribution and impacts of climate change on the suitable habitats of Rhamnus utilis Decne in China.
    Guiquan S; Jiali F; Shuai G; Wenya H; Xiangkun K; Sheng Z; Yueling Z; Xuelian J
    BMC Plant Biol; 2023 Nov; 23(1):592. PubMed ID: 38008724
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting Quercus gilva distribution dynamics and its response to climate change induced by GHGs emission through MaxEnt modeling.
    Shi J; Xia M; He G; Gonzalez NCT; Zhou S; Lan K; Ouyang L; Shen X; Jiang X; Cao F; Li H
    J Environ Manage; 2024 Apr; 357():120841. PubMed ID: 38581898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting the Impact of Climate Change on the Future Distribution of
    Gao H; Wei X; Peng Y; Zhuo Z
    Insects; 2024 Jun; 15(6):. PubMed ID: 38921152
    [No Abstract]   [Full Text] [Related]  

  • 54. [Prediction of potential suitable habitats of
    Zhang Y; Wang Y; Yuan S; Tang L; Zhang W; Chen Q; Chen S; Yu Y; Jia Y
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2023 Jun; 35(3):263-270. PubMed ID: 37455097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting the potential suitable habitats of
    Yang QJ; Li R
    Ying Yong Sheng Tai Xue Bao; 2021 Feb; 32(2):538-548. PubMed ID: 33650363
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Prediction of potential distribution of the invasive species Procambarus clarkii in China based on ecological niche models].
    Xiao Q; Zhang MT; Wu Y; Ding H; Lei JC; Zhu SL; Zhang ZH; Chen L
    Ying Yong Sheng Tai Xue Bao; 2020 Jan; 31(1):309-318. PubMed ID: 31957409
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting potential distribution of the Rhinoncus sibiricus under climatic in China using MaxEnt.
    Liu W; Meng H; Dong B; Fan J; Zhu X; Zhou H
    PLoS One; 2024; 19(1):e0297126. PubMed ID: 38241257
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phylogeography and ecological niche modeling unravel the evolutionary history of the Yarkand hare, Lepus yarkandensis (Mammalia: Leporidae), through the Quaternary.
    Kumar B; Cheng J; Ge D; Xia L; Yang Q
    BMC Evol Biol; 2019 Jun; 19(1):113. PubMed ID: 31153378
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Prediction for the potential distribution area of Codonopsis pilosula at global scale based on Maxent model].
    Guo J; Liu XP; Zhang Q; Zhang DF; Xie CX; Liu X
    Ying Yong Sheng Tai Xue Bao; 2017 Mar; 28(3):992-1000. PubMed ID: 29741029
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impacts of Climate Changes on Geographic Distribution of
    Jiang X; Liu WJ; Zhu YZ; Cao YT; Yang XM; Geng Y; Zhang FJ; Sun RQ; Jia RW; Yan CL; Zhang YY; Li ZH
    Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896023
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.