BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 37087739)

  • 1. Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models.
    Lewns FK; Tsigkou O; Cox LR; Wildman RD; Grover LM; Poologasundarampillai G
    Adv Mater; 2023 Dec; 35(52):e2301670. PubMed ID: 37087739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity.
    Sanchez-Rubio A; Jayawarna V; Maxwell E; Dalby MJ; Salmeron-Sanchez M
    Adv Healthc Mater; 2023 Jul; 12(17):e2202110. PubMed ID: 36938891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering.
    Duarte Campos DF; Blaeser A; Buellesbach K; Sen KS; Xun W; Tillmann W; Fischer H
    Adv Healthc Mater; 2016 Jun; 5(11):1336-45. PubMed ID: 27072652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinting of dense cellular structures within hydrogels with spatially controlled heterogeneity.
    Abaci A; Guvendiren M
    Biofabrication; 2024 Jun; 16(3):. PubMed ID: 38821144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin.
    Rajput M; Mondal P; Yadav P; Chatterjee K
    Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioprinting of 3D hydrogels.
    Stanton MM; Samitier J; Sánchez S
    Lab Chip; 2015 Aug; 15(15):3111-5. PubMed ID: 26066320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.
    Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF
    Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion.
    Szklanny AA; Machour M; Redenski I; Chochola V; Goldfracht I; Kaplan B; Epshtein M; Simaan Yameen H; Merdler U; Feinberg A; Seliktar D; Korin N; Jaroš J; Levenberg S
    Adv Mater; 2021 Oct; 33(42):e2102661. PubMed ID: 34510579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications.
    Zhuang P; Ng WL; An J; Chua CK; Tan LP
    PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing Frontiers in Bone Bioprinting.
    Ashammakhi N; Hasan A; Kaarela O; Byambaa B; Sheikhi A; Gaharwar AK; Khademhosseini A
    Adv Healthc Mater; 2019 Apr; 8(7):e1801048. PubMed ID: 30734530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting of structural proteins.
    Włodarczyk-Biegun MK; Del Campo A
    Biomaterials; 2017 Jul; 134():180-201. PubMed ID: 28477541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan-based high-strength supramolecular hydrogels for 3D bioprinting.
    Xu J; Zhang M; Du W; Zhao J; Ling G; Zhang P
    Int J Biol Macromol; 2022 Oct; 219():545-557. PubMed ID: 35907459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication.
    da Conceicao Ribeiro R; Pal D; Ferreira AM; Gentile P; Benning M; Dalgarno K
    Biofabrication; 2018 Dec; 11(1):015014. PubMed ID: 30524040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting a Multifunctional Bioink to Engineer Clickable 3D Cellular Niches with Tunable Matrix Microenvironmental Cues.
    Pereira RF; Lourenço BN; Bártolo PJ; Granja PL
    Adv Healthc Mater; 2021 Jan; 10(2):e2001176. PubMed ID: 33135399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds.
    Gehlen J; Qiu W; Schädli GN; Müller R; Qin XH
    Acta Biomater; 2023 Jan; 156():49-60. PubMed ID: 35718102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone matrix production in hydroxyapatite-modified hydrogels suitable for bone bioprinting.
    Wenz A; Borchers K; Tovar GEM; Kluger PJ
    Biofabrication; 2017 Nov; 9(4):044103. PubMed ID: 28990579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.