These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37087899)
21. LEARNING TO DETECT BRAIN LESIONS FROM NOISY ANNOTATIONS. Karimi D; Peters JM; Ouaalam A; Prabhu SP; Sahin M; Krueger DA; Kolevzon A; Eng C; Warfield SK; Gholipour A Proc IEEE Int Symp Biomed Imaging; 2020 Apr; 2020():1910-1914. PubMed ID: 32879655 [TBL] [Abstract][Full Text] [Related]
22. Deep semi-supervised multiple instance learning with self-correction for DME classification from OCT images. Wang X; Tang F; Chen H; Cheung CY; Heng PA Med Image Anal; 2023 Jan; 83():102673. PubMed ID: 36403310 [TBL] [Abstract][Full Text] [Related]
23. A Soft Labeling Approach to Develop Automated Algorithms that Incorporate Uncertainty in Pulmonary Opacification on Chest CT using COVID-19 Pneumonia. Lensink K; Lo FJ; Eddy RL; Law M; Laradji I; Haber E; Nicolaou S; Murphy D; Parker WA Acad Radiol; 2022 Jul; 29(7):994-1003. PubMed ID: 35490114 [TBL] [Abstract][Full Text] [Related]
24. How to handle noisy labels for robust learning from uncertainty. Ji D; Oh D; Hyun Y; Kwon OM; Park MJ Neural Netw; 2021 Nov; 143():209-217. PubMed ID: 34157645 [TBL] [Abstract][Full Text] [Related]
25. Uncertainty-Aware Deep Learning With Cross-Task Supervision for PHE Segmentation on CT Images. Kuang Z; Yan Z; Yu L; Deng X; Hua Y; Li S IEEE J Biomed Health Inform; 2022 Jun; 26(6):2615-2626. PubMed ID: 34986106 [TBL] [Abstract][Full Text] [Related]
26. Annotation-Efficient Learning for Medical Image Segmentation Based on Noisy Pseudo Labels and Adversarial Learning. Wang L; Guo D; Wang G; Zhang S IEEE Trans Med Imaging; 2021 Oct; 40(10):2795-2807. PubMed ID: 33370237 [TBL] [Abstract][Full Text] [Related]
27. Curriculum learning for improved femur fracture classification: Scheduling data with prior knowledge and uncertainty. Jiménez-Sánchez A; Mateus D; Kirchhoff S; Kirchhoff C; Biberthaler P; Navab N; González Ballester MA; Piella G Med Image Anal; 2022 Jan; 75():102273. PubMed ID: 34731773 [TBL] [Abstract][Full Text] [Related]
28. Learning COVID-19 Pneumonia Lesion Segmentation From Imperfect Annotations via Divergence-Aware Selective Training. Yang S; Wang G; Sun H; Luo X; Sun P; Li K; Wang Q; Zhang S IEEE J Biomed Health Inform; 2022 Aug; 26(8):3673-3684. PubMed ID: 35522641 [TBL] [Abstract][Full Text] [Related]
29. Addressing Deep Learning Model Calibration Using Evidential Neural Networks And Uncertainty-Aware Training. Dawood T; Chan E; Razavi R; King AP; Puyol-Antón E Proc IEEE Int Symp Biomed Imaging; 2023 Apr; 34():1-5. PubMed ID: 39253557 [TBL] [Abstract][Full Text] [Related]
30. Enabling a Single Deep Learning Model for Accurate Gland Instance Segmentation: A Shape-Aware Adversarial Learning Framework. Yan Z; Yang X; Cheng KT IEEE Trans Med Imaging; 2020 Jun; 39(6):2176-2189. PubMed ID: 31944936 [TBL] [Abstract][Full Text] [Related]
31. FMixCutMatch for semi-supervised deep learning. Wei X; Wei X; Kong X; Lu S; Xing W; Lu W Neural Netw; 2021 Jan; 133():166-176. PubMed ID: 33217685 [TBL] [Abstract][Full Text] [Related]
32. Learning From Pixel-Level Label Noise: A New Perspective for Semi-Supervised Semantic Segmentation. Yi R; Huang Y; Guan Q; Pu M; Zhang R IEEE Trans Image Process; 2022; 31():623-635. PubMed ID: 34910634 [TBL] [Abstract][Full Text] [Related]
34. A Time-Consistency Curriculum for Learning From Instance-Dependent Noisy Labels. Wu S; Zhou T; Du Y; Yu J; Han B; Liu T IEEE Trans Pattern Anal Mach Intell; 2024 Jul; 46(7):4830-4842. PubMed ID: 38300782 [TBL] [Abstract][Full Text] [Related]
35. Merging nucleus datasets by correlation-based cross-training. Zhang W; Zhang J; Wang X; Yang S; Huang J; Yang W; Wang W; Han X Med Image Anal; 2023 Feb; 84():102705. PubMed ID: 36525843 [TBL] [Abstract][Full Text] [Related]
36. Breast tumor classification through learning from noisy labeled ultrasound images. Cao Z; Yang G; Chen Q; Chen X; Lv F Med Phys; 2020 Mar; 47(3):1048-1057. PubMed ID: 31837239 [TBL] [Abstract][Full Text] [Related]
37. FaxMatch: Multi-Curriculum Pseudo-Labeling for semi-supervised medical image classification. Peng Z; Zhang D; Tian S; Wu W; Yu L; Zhou S; Huang S Med Phys; 2023 May; 50(5):3210-3222. PubMed ID: 36779849 [TBL] [Abstract][Full Text] [Related]
38. Uncertainty aware training to improve deep learning model calibration for classification of cardiac MR images. Dawood T; Chen C; Sidhu BS; Ruijsink B; Gould J; Porter B; Elliott MK; Mehta V; Rinaldi CA; Puyol-Antón E; Razavi R; King AP Med Image Anal; 2023 Aug; 88():102861. PubMed ID: 37327613 [TBL] [Abstract][Full Text] [Related]
39. Confidence Calibration of a Medical Imaging Classification System That is Robust to Label Noise. Penso C; Frenkel L; Goldberger J IEEE Trans Med Imaging; 2024 Jun; 43(6):2050-2060. PubMed ID: 38224509 [TBL] [Abstract][Full Text] [Related]
40. Breast Dense Tissue Segmentation with Noisy Labels: A Hybrid Threshold-Based and Mask-Based Approach. Larroza A; Pérez-Benito FJ; Perez-Cortes JC; Román M; Pollán M; Pérez-Gómez B; Salas-Trejo D; Casals M; Llobet R Diagnostics (Basel); 2022 Jul; 12(8):. PubMed ID: 36010173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]