These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37088713)

  • 1. Photochromic Polyoxoniobates with Photoinduced "D-f-A" Electron Transfer Mechanism.
    Yu H; Lin YD; Huang SL; Li XX; Sun C; Zheng ST
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202302111. PubMed ID: 37088713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Record High-Nuclearity Polyoxoniobates: Discrete Nanoclusters {Nb
    Jin L; Zhu ZK; Wu YL; Qi YJ; Li XX; Zheng ST
    Angew Chem Int Ed Engl; 2017 Dec; 56(51):16288-16292. PubMed ID: 29105960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic-Organic Hybrid Polyoxoniobates: Polyoxoniobate Metal Complex Cage and Cage Framework.
    Zhu ZK; Lin YY; Yu H; Li XX; Zheng ST
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16864-16868. PubMed ID: 31613421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Stable Water-Soluble Supratomic Silver Clusters Utilizing A Polyoxoniobate-Protected Strategy: Giant Core-Shell-Type Ag
    Hong LH; Yue SN; Huang X; Sun C; Cai PW; Sun YQ; Li XX; Zheng ST
    Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202404314. PubMed ID: 38712987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Giant Calixarene-Like Polyoxoniobate Nanocups {Cu
    Zhu ZK; Zhang J; Cong YC; Ge R; Li Z; Li XX; Zheng ST
    Angew Chem Int Ed Engl; 2022 Feb; 61(7):e202113381. PubMed ID: 34919310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. {Nb
    Wu YL; Li XX; Qi YJ; Yu H; Jin L; Zheng ST
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8572-8576. PubMed ID: 29809317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox catalysis
    Lee YM; Nam W; Fukuzumi S
    Chem Sci; 2023 Apr; 14(16):4205-4218. PubMed ID: 37123199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assemblies of Increasingly Large Ln-Containing Polyoxoniobates and Intermolecular Aggregation-Disaggregation Interconversions.
    Lai RD; Zhang J; Li XX; Zheng ST; Yang GY
    J Am Chem Soc; 2022 Oct; 144(42):19603-19610. PubMed ID: 36239996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Organodiphosphate-Containing Polyoxoniobate Ring and Its Assembly into a Three-Dimensional Framework through Hydrogen Bonding.
    Cong YC; Xiao HP; Cai PW; Sun C; Sun YQ; Qi MQ; Li XX; Zheng ST
    Inorg Chem; 2024 May; 63(20):9204-9211. PubMed ID: 38701353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyoxoniobate chemistry in the 21st century.
    Nyman M
    Dalton Trans; 2011 Aug; 40(32):8049-58. PubMed ID: 21670824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, structures and stability of three V-substituted polyoxoniobate clusters based on [TeNb
    Yang Z; Shang J; Yang Y; Ma P; Niu J; Wang J
    Dalton Trans; 2021 Jun; 50(22):7610-7620. PubMed ID: 33988637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An organophosphate 3d-4f heterometallic polyoxoniobate nanowire.
    Fan JA; Yu H; Lin YD; Qi MQ; Kong XJ; Sun C; Zheng ST
    Nanoscale; 2024 Jul; 16(26):12420-12423. PubMed ID: 38888289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences.
    Wenger OS
    Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deliberate Construction of Polyoxoniobates Exploiting the Carbonate Ligand.
    Amiri M; Martin NP; Feng CL; Lovio JK; Nyman M
    Angew Chem Int Ed Engl; 2021 May; 60(22):12461-12466. PubMed ID: 33689222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-Shell-Type All-Inorganic Heterometallic Nanoclusters: Record High-Nuclearity Cobalt Polyoxoniobates for Visible-Light-Driven Photocatalytic CO
    Guo ZW; Lin LH; Ye JP; Chen Y; Li XX; Lin S; Huang JD; Zheng ST
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202305260. PubMed ID: 37118979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic Applications of Proton-Coupled Electron Transfer.
    Gentry EC; Knowles RR
    Acc Chem Res; 2016 Aug; 49(8):1546-56. PubMed ID: 27472068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicking biological electron transport in sol-gel glass: photoinduced electron transfer from zinc cytochrome C to plastocyanin or cytochrome C mediated by mobile inorganic complexes.
    Pletneva EV; Crnogorac MM; Kostić NM
    J Am Chem Soc; 2002 Dec; 124(48):14342-54. PubMed ID: 12452708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-Hydroxypseudooxynicotine Dehydrogenase Delivers Electrons to Electron Transfer Flavoprotein during Nicotine Degradation by Agrobacterium tumefaciens S33.
    Wang R; Yi J; Shang J; Yu W; Li Z; Huang H; Xie H; Wang S
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926728
    [No Abstract]   [Full Text] [Related]  

  • 20. Probing the effects of one-electron reduction and protonation on the electronic properties of the Fe-S clusters in the active-ready form of [FeFe]-hydrogenases. A QM/MM investigation.
    Greco C; Bruschi M; Fantucci P; Ryde U; De Gioia L
    Chemphyschem; 2011 Dec; 12(17):3376-82. PubMed ID: 22084023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.