These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37088813)

  • 1. In-silico target prediction by ensemble chemogenomic model based on multi-scale information of chemical structures and protein sequences.
    Yang SQ; Zhang LX; Ge YJ; Zhang JW; Hu JX; Shen CY; Lu AP; Hou TJ; Cao DS
    J Cheminform; 2023 Apr; 15(1):48. PubMed ID: 37088813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemogenomic Approaches for Revealing Drug Target Interactions in Drug Discovery.
    Bhargava H; Sharma A; Suravajhala P
    Curr Genomics; 2021 Dec; 22(5):328-338. PubMed ID: 35283667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach.
    Sawada R; Kotera M; Yamanishi Y
    Mol Inform; 2014 Dec; 33(11-12):719-31. PubMed ID: 27485418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database.
    Wang L; Ma C; Wipf P; Liu H; Su W; Xie XQ
    AAPS J; 2013 Apr; 15(2):395-406. PubMed ID: 23292636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug-target interaction prediction using ensemble learning and dimensionality reduction.
    Ezzat A; Wu M; Li XL; Kwoh CK
    Methods; 2017 Oct; 129():81-88. PubMed ID: 28549952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive review of feature based methods for drug target interaction prediction.
    Sachdev K; Gupta MK
    J Biomed Inform; 2019 May; 93():103159. PubMed ID: 30926470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive assessment of nine target prediction web services: which should we choose for target fishing?
    Ji KY; Liu C; Liu ZQ; Deng YF; Hou TJ; Cao DS
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36681902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid ensemble-based technique for predicting drug-target interactions.
    Sachdev K; Gupta MK
    Chem Biol Drug Des; 2020 Dec; 96(6):1447-1455. PubMed ID: 32638508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open-source chemogenomic data-driven algorithms for predicting drug-target interactions.
    Hao M; Bryant SH; Wang Y
    Brief Bioinform; 2019 Jul; 20(4):1465-1474. PubMed ID: 29420684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel.
    Meslamani J; Rognan D
    J Chem Inf Model; 2011 Jul; 51(7):1593-603. PubMed ID: 21644501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient Boosting Decision Tree-Based Method for Predicting Interactions Between Target Genes and Drugs.
    Xuan P; Sun C; Zhang T; Ye Y; Shen T; Dong Y
    Front Genet; 2019; 10():459. PubMed ID: 31214240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations.
    Rifaioglu AS; Nalbat E; Atalay V; Martin MJ; Cetin-Atalay R; Doğan T
    Chem Sci; 2020 Mar; 11(9):2531-2557. PubMed ID: 33209251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of drug-target interactions from multi-molecular network based on LINE network representation method.
    Ji BY; You ZH; Jiang HJ; Guo ZH; Zheng K
    J Transl Med; 2020 Sep; 18(1):347. PubMed ID: 32894154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug-target interaction prediction via chemogenomic space: learning-based methods.
    Mousavian Z; Masoudi-Nejad A
    Expert Opin Drug Metab Toxicol; 2014 Sep; 10(9):1273-87. PubMed ID: 25112457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable prediction of compound-protein interactions using minwise hashing.
    Tabei Y; Yamanishi Y
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S3. PubMed ID: 24564870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of chemical-protein interactions: multitarget-QSAR versus computational chemogenomic methods.
    Cheng F; Zhou Y; Li J; Li W; Liu G; Tang Y
    Mol Biosyst; 2012 Sep; 8(9):2373-84. PubMed ID: 22751809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DTIP: A Comparative Analytical Framework for Chemogenomic Drugtarget Interactions Prediction.
    Haddadi F; Kayvanpour MR
    Curr Comput Aided Drug Des; 2021; 17(1):2-21. PubMed ID: 31854276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example.
    Mahasenan KV; Li C
    J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.