These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37089082)

  • 1. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships.
    Yang C; Gao Y; Ma T; Bai M; He C; Ren X; Luo X; Wu C; Li S; Cheng C
    Adv Mater; 2023 Dec; 35(51):e2301836. PubMed ID: 37089082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states.
    Cao S; Long Y; Xiao S; Deng Y; Ma L; Adeli M; Qiu L; Cheng C; Zhao C
    Chem Soc Rev; 2023 Oct; 52(19):6838-6881. PubMed ID: 37705437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Synthesis of Noble Metal-Based Alloy Electrocatalysts and Their Application in Hydrogen Evolution Reaction.
    Cui Z; Jiao W; Huang Z; Chen G; Zhang B; Han Y; Huang W
    Small; 2023 Aug; 19(35):e2301465. PubMed ID: 37186069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust noble metal-based electrocatalysts for oxygen evolution reaction.
    Shi Q; Zhu C; Du D; Lin Y
    Chem Soc Rev; 2019 Jun; 48(12):3181-3192. PubMed ID: 31112142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction.
    Gao L; Cui X; Sewell CD; Li J; Lin Z
    Chem Soc Rev; 2021 Aug; 50(15):8428-8469. PubMed ID: 34259239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives.
    Kundu A; Kuila T; Murmu NC; Samanta P; Das S
    Mater Horiz; 2023 Mar; 10(3):745-787. PubMed ID: 36594186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships.
    Lv N; Li Q; Zhu H; Mu S; Luo X; Ren X; Liu X; Li S; Cheng C; Ma T
    Adv Sci (Weinh); 2023 Mar; 10(7):e2206239. PubMed ID: 36599650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoarchitectonics of Metallene Materials for Electrocatalysis.
    Jiang B; Guo Y; Sun F; Wang S; Kang Y; Xu X; Zhao J; You J; Eguchi M; Yamauchi Y; Li H
    ACS Nano; 2023 Jul; 17(14):13017-13043. PubMed ID: 37367960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in ZIF-Derived Atomic Metal-N-C Electrocatalysts for Oxygen Reduction Reaction: Synthetic Strategies, Active Centers, and Stabilities.
    Gao C; Mu S; Yan R; Chen F; Ma T; Cao S; Li S; Ma L; Wang Y; Cheng C
    Small; 2022 Apr; 18(14):e2105409. PubMed ID: 35023628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Metal-Support Interaction Modulation of Single-Atom Electrocatalysts for Rechargeable Zinc-Air Batteries.
    Wu M; Zhang G; Wang W; Yang H; Rawach D; Chen M; Sun S
    Small Methods; 2022 Mar; 6(3):e2100947. PubMed ID: 35037425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design Strategies of Transition-Metal Phosphate and Phosphonate Electrocatalysts for Energy-Related Reactions.
    Zhao H; Yuan ZY
    ChemSusChem; 2021 Jan; 14(1):130-149. PubMed ID: 33030810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordered intermetallic compounds combining precious metals and transition metals for electrocatalysis.
    Yang M; Wan J; Yan C
    Front Chem; 2022; 10():1007931. PubMed ID: 36186599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing.
    Lu L
    Mikrochim Acta; 2019 Sep; 186(9):664. PubMed ID: 31478090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of High Entropy Alloys Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction.
    Huo X; Yu H; Xing B; Zuo X; Zhang N
    Chem Rec; 2022 Dec; 22(12):e202200175. PubMed ID: 36108141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in electrocatalytic hydrogen evolution of transition metal alloys: synthesis, structure, and mechanism analysis.
    Jin D; Qiao F; Chu H; Xie Y
    Nanoscale; 2023 Apr; 15(16):7202-7226. PubMed ID: 37038769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrite-Type Nanomaterials for Advanced Electrocatalysis.
    Gao MR; Zheng YR; Jiang J; Yu SH
    Acc Chem Res; 2017 Sep; 50(9):2194-2204. PubMed ID: 28825788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Local Atomic Environments in Single-Atom Electrocatalysts for Renewable Energy Conversions.
    Sun T; Mitchell S; Li J; Lyu P; Wu X; Pérez-Ramírez J; Lu J
    Adv Mater; 2021 Feb; 33(5):e2003075. PubMed ID: 33283369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property.
    Liu HL; Nosheen F; Wang X
    Chem Soc Rev; 2015 May; 44(10):3056-78. PubMed ID: 25793455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.