These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37089111)

  • 1. Imaging of Antiferroelectric Dark Modes in an Inverted Plasmonic Lattice.
    Rodríguez-Álvarez J; Labarta A; Idrobo JC; Dell'Anna R; Cian A; Giubertoni D; Borrisé X; Guerrero A; Perez-Murano F; Fraile Rodríguez A; Batlle X
    ACS Nano; 2023 May; 17(9):8123-8132. PubMed ID: 37089111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Inverted Honeycomb Plasmonic Lattice as an Efficient Refractive Index Sensor.
    Rodríguez-Álvarez J; Gnoatto L; Martínez-Castells M; Guerrero A; Borrisé X; Fraile Rodríguez A; Batlle X; Labarta A
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lasing in dark and bright modes of a finite-sized plasmonic lattice.
    Hakala TK; Rekola HT; Väkeväinen AI; Martikainen JP; Nečada M; Moilanen AJ; Törmä P
    Nat Commun; 2017 Jan; 8():13687. PubMed ID: 28045047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping optical Bloch modes of a plasmonic square lattice in real and reciprocal spaces using cathodoluminescence spectroscopy.
    Bittorf PH; Davoodi F; Taleb M; Talebi N
    Opt Express; 2021 Oct; 29(21):34328-34340. PubMed ID: 34809226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark plasmonic mode based perfect absorption and refractive index sensing.
    Yang WH; Zhang C; Sun S; Jing J; Song Q; Xiao S
    Nanoscale; 2017 Jul; 9(26):8907-8912. PubMed ID: 28638910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Lattice Resonances in 3D Chiral Metacrystals for Plasmonic Sensing.
    Manoccio M; Tasco V; Todisco F; Passaseo A; Cuscuna M; Tarantini I; Gigli G; Esposito M
    Adv Sci (Weinh); 2023 Feb; 10(6):e2206930. PubMed ID: 36575146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Cavities and Individual Quantum Emitters in the Strong Coupling Limit.
    Bitton O; Haran G
    Acc Chem Res; 2022 Jun; 55(12):1659-1668. PubMed ID: 35649040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of thermal annealing and laser treatment on the morphology and optical responses of mono- and bi-metallic plasmonic honeycomb lattice.
    Chen YJ; Schmidl G; Dellith A; Gawlik A; Jia G; Bocklitz T; Wu X; Plentz J; Huang JS
    Nanoscale; 2023 Oct; 15(41):16626-16635. PubMed ID: 37772449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolithic Metal Dimer-on-Film Structure: New Plasmonic Properties Introduced by the Underlying Metal.
    Gerislioglu B; Dong L; Ahmadivand A; Hu H; Nordlander P; Halas NJ
    Nano Lett; 2020 Mar; 20(3):2087-2093. PubMed ID: 31990568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays.
    Lin QY; Li Z; Brown KA; O'Brien MN; Ross MB; Zhou Y; Butun S; Chen PC; Schatz GC; Dravid VP; Aydin K; Mirkin CA
    Nano Lett; 2015 Jul; 15(7):4699-703. PubMed ID: 26046948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic-plasmonic scattering resonances in deterministic aperiodic structures.
    Gopinath A; Boriskina SV; Feng NN; Reinhard BM; Dal Negro L
    Nano Lett; 2008 Aug; 8(8):2423-31. PubMed ID: 18646833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic surface lattice resonances at the strong coupling regime.
    Väkeväinen AI; Moerland RJ; Rekola HT; Eskelinen AP; Martikainen JP; Kim DH; Törmä P
    Nano Lett; 2014; 14(4):1721-7. PubMed ID: 24279840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.
    Simoncelli S; Li Y; Cortés E; Maier SA
    Nano Lett; 2018 Jun; 18(6):3400-3406. PubMed ID: 29715431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt-mediated, plasmonic field-field/field-lattice coupling-enhanced NIR-II photodynamic therapy using core-gap-shell gold nanopeanuts.
    Kuthala N; Shanmugam M; Kong X; Chiang CS; Hwang KC
    Nanoscale Horiz; 2022 May; 7(6):589-606. PubMed ID: 35527504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective excitation of bright and dark plasmonic resonances of single gold nanorods.
    Demichel O; Petit M; Colas des Francs G; Bouhelier A; Hertz E; Billard F; de Fornel F; Cluzel B
    Opt Express; 2014 Jun; 22(12):15088-96. PubMed ID: 24977601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.