These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37089206)

  • 1. GrapesNet: Indian RGB & RGB-D vineyard image datasets for deep learning applications.
    Barbole DK; Jadhav PM
    Data Brief; 2023 Jun; 48():109100. PubMed ID: 37089206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dataset on UAV RGB videos acquired over a vineyard including bunch labels for object detection and tracking.
    Ariza-Sentís M; Vélez S; Valente J
    Data Brief; 2023 Feb; 46():108848. PubMed ID: 36619256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. wGrapeUNIPD-DL: An open dataset for white grape bunch detection.
    Sozzi M; Cantalamessa S; Cogato A; Kayad A; Marinello F
    Data Brief; 2022 Aug; 43():108466. PubMed ID: 35873279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Techniques for Grape Plant Species Identification in Natural Images.
    Pereira CS; Morais R; Reis MJCS
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31703313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating 2-D and 3-D Proximal Remote Sensing Techniques for Vineyard Yield Estimation.
    Hacking C; Poona N; Manzan N; Poblete-Echeverría C
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31443479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Within-Vineyard, Within-Vine, and Within-Bunch Variability of the Rotundone Concentration in Berries of Vitis vinifera L. cv. Shiraz.
    Zhang P; Barlow S; Krstic M; Herderich M; Fuentes S; Howell K
    J Agric Food Chem; 2015 May; 63(17):4276-83. PubMed ID: 25891266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the phenolic composition and yield of 'BRS Vitoria' seedless table grape under different bunch densities using HPLC-DAD-ESI-MS/MS.
    Colombo RC; Roberto SR; Nixdorf SL; Pérez-Navarro J; Gómez-Alonso S; Mena-Morales A; García-Romero E; Azeredo Gonçalves LS; da Cruz MA; de Carvalho DU; Madeira TB; Watanabe LS; de Souza RT; Hermosín-Gutiérrez I
    Food Res Int; 2020 Apr; 130():108955. PubMed ID: 32156395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vineyard yield estimation based on the analysis of high resolution images obtained with artificial illumination at night.
    Font D; Tresanchez M; Martínez D; Moreno J; Clotet E; Palacín J
    Sensors (Basel); 2015 Apr; 15(4):8284-301. PubMed ID: 25860071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fruit Detection and Pose Estimation for Grape Cluster-Harvesting Robot Using Binocular Imagery Based on Deep Neural Networks.
    Yin W; Wen H; Ning Z; Ye J; Dong Z; Luo L
    Front Robot AI; 2021; 8():626989. PubMed ID: 34239899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Low-Cost and Unsupervised Image Recognition Methodology for Yield Estimation in a Vineyard.
    Di Gennaro SF; Toscano P; Cinat P; Berton A; Matese A
    Front Plant Sci; 2019; 10():559. PubMed ID: 31130974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.
    Knauer U; Matros A; Petrovic T; Zanker T; Scott ES; Seiffert U
    Plant Methods; 2017; 13():47. PubMed ID: 28630643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusing attention mechanism with Mask R-CNN for instance segmentation of grape cluster in the field.
    Shen L; Su J; Huang R; Quan W; Song Y; Fang Y; Su B
    Front Plant Sci; 2022; 13():934450. PubMed ID: 35937371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Grape Cluster Detection in a Vineyard by Combining the AdaBoost Framework and Multiple Color Components.
    Luo L; Tang Y; Zou X; Wang C; Zhang P; Feng W
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WE3DS: An RGB-D Image Dataset for Semantic Segmentation in Agriculture.
    Kitzler F; Barta N; Neugschwandtner RW; Gronauer A; Motsch V
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China: A preliminary study.
    Sun X; Ma T; Yu J; Huang W; Fang Y; Zhan J
    Food Chem; 2018 Feb; 241():40-50. PubMed ID: 28958546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. deepNIR: Datasets for Generating Synthetic NIR Images and Improved Fruit Detection System Using Deep Learning Techniques.
    Sa I; Lim JY; Ahn HS; MacDonald B
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel ground truth multispectral image dataset with weight, anthocyanins, and Brix index measures of grape berries tested for its utility in machine learning pipelines.
    Navarro PJ; Miller L; Díaz-Galián MV; Gila-Navarro A; Aguila DJ; Egea-Cortines M
    Gigascience; 2022 Jun; 11():. PubMed ID: 35701377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a dual-arm rapid grape-harvesting robot for horizontal trellis cultivation.
    Jiang Y; Liu J; Wang J; Li W; Peng Y; Shan H
    Front Plant Sci; 2022; 13():881904. PubMed ID: 36204069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to
    Herzog K; Schwander F; Kassemeyer HH; Bieler E; Dürrenberger M; Trapp O; Töpfer R
    Front Plant Sci; 2021; 12():808365. PubMed ID: 35222454
    [No Abstract]   [Full Text] [Related]  

  • 20. Deep Learning Based Automatic Grape Downy Mildew Detection.
    Zhang Z; Qiao Y; Guo Y; He D
    Front Plant Sci; 2022; 13():872107. PubMed ID: 35755646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.