These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 37089449)

  • 1. Neoadjuvant immune checkpoint blockade triggers persistent and systemic T
    Blomberg OS; Kos K; Spagnuolo L; Isaeva OI; Garner H; Wellenstein MD; Bakker N; Duits DEM; Kersten K; Klarenbeek S; Hau CS; Kaldenbach D; Raeven EAM; Vrijland K; Kok M; de Visser KE
    Oncoimmunology; 2023; 12(1):2201147. PubMed ID: 37089449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vectorized Treg-depleting αCTLA-4 elicits antigen cross-presentation and CD8
    Semmrich M; Marchand JB; Fend L; Rehn M; Remy C; Holmkvist P; Silvestre N; Svensson C; Kleinpeter P; Deforges J; Junghus F; Cleary KL; Bodén M; Mårtensson L; Foloppe J; Teige I; Quéméneur E; Frendéus B
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35058324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of radiation therapy, bempegaldesleukin, and checkpoint blockade eradicates advanced solid tumors and metastases in mice.
    Pieper AA; Rakhmilevich AL; Spiegelman DV; Patel RB; Birstler J; Jin WJ; Carlson PM; Charych DH; Hank JA; Erbe AK; Overwijk WW; Morris ZS; Sondel PM
    J Immunother Cancer; 2021 Jun; 9(6):. PubMed ID: 34172518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-5-producing CD4
    Blomberg OS; Spagnuolo L; Garner H; Voorwerk L; Isaeva OI; van Dyk E; Bakker N; Chalabi M; Klaver C; Duijst M; Kersten K; Brüggemann M; Pastoors D; Hau CS; Vrijland K; Raeven EAM; Kaldenbach D; Kos K; Afonina IS; Kaptein P; Hoes L; Theelen WSME; Baas P; Voest EE; Beyaert R; Thommen DS; Wessels LFA; de Visser KE; Kok M
    Cancer Cell; 2023 Jan; 41(1):106-123.e10. PubMed ID: 36525971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise Training Improves Tumor Control by Increasing CD8
    Gomes-Santos IL; Amoozgar Z; Kumar AS; Ho WW; Roh K; Talele NP; Curtis H; Kawaguchi K; Jain RK; Fukumura D
    Cancer Immunol Res; 2021 Jul; 9(7):765-778. PubMed ID: 33839688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neoadjuvant
    Oba T; Kajihara R; Yokoi T; Repasky EA; Ito F
    Cancer Res; 2021 Dec; 81(24):6183-6195. PubMed ID: 34666993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory T lymphocyte infiltration in metastatic breast cancer-an independent prognostic factor that changes with tumor progression.
    Stenström J; Hedenfalk I; Hagerling C
    Breast Cancer Res; 2021 Feb; 23(1):27. PubMed ID: 33602289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the immunologically "cold" tumor microenvironment after treatment with immune checkpoint inhibitors utilizing PET imaging of CD4 + and CD8 + T cells in breast cancer mouse models.
    Lu Y; Houson HA; Gallegos CA; Mascioni A; Jia F; Aivazian A; Song PN; Lynch SE; Napier TS; Mansur A; Larimer BM; Lapi SE; Hanker AB; Sorace AG
    Breast Cancer Res; 2024 Jun; 26(1):104. PubMed ID: 38918836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.
    Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Depletion of Intratumoral Regulatory T Cells Induces Synchronized CD8 T- and NK-cell Activation and IFNγ-Dependent Tumor Vessel Regression.
    Kurebayashi Y; Olkowski CP; Lane KC; Vasalatiy OV; Xu BC; Okada R; Furusawa A; Choyke PL; Kobayashi H; Sato N
    Cancer Res; 2021 Jun; 81(11):3092-3104. PubMed ID: 33574087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomarkers of Immune Checkpoint Blockade Response in Triple-Negative Breast Cancer.
    Isaacs J; Anders C; McArthur H; Force J
    Curr Treat Options Oncol; 2021 Mar; 22(5):38. PubMed ID: 33743085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Efficacy of Simultaneous PD-1 and PD-L1 Immune Checkpoint Blockade in High-Grade Serous Ovarian Cancer.
    Wan C; Keany MP; Dong H; Al-Alem LF; Pandya UM; Lazo S; Boehnke K; Lynch KN; Xu R; Zarrella DT; Gu S; Cejas P; Lim K; Long HW; Elias KM; Horowitz NS; Feltmate CM; Muto MG; Worley MJ; Berkowitz RS; Matulonis UA; Nucci MR; Crum CP; Rueda BR; Brown M; Liu XS; Hill SJ
    Cancer Res; 2021 Jan; 81(1):158-173. PubMed ID: 33158814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neoadjuvant STING Activation, Extended Half-life IL2, and Checkpoint Blockade Promote Metastasis Clearance via Sustained NK-cell Activation.
    Milling LE; Garafola D; Agarwal Y; Wu S; Thomas A; Donahue N; Adams J; Thai N; Suh H; Irvine DJ
    Cancer Immunol Res; 2022 Jan; 10(1):26-39. PubMed ID: 34686488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activin A Promotes Regulatory T-cell-Mediated Immunosuppression in Irradiated Breast Cancer.
    De Martino M; Daviaud C; Diamond JM; Kraynak J; Alard A; Formenti SC; Miller LD; Demaria S; Vanpouille-Box C
    Cancer Immunol Res; 2021 Jan; 9(1):89-102. PubMed ID: 33093219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presence of circulating Her2-reactive CD8 + T-cells is associated with lower frequencies of myeloid-derived suppressor cells and regulatory T cells, and better survival in older breast cancer patients.
    Bailur JK; Gueckel B; Derhovanessian E; Pawelec G
    Breast Cancer Res; 2015 Mar; 17(1):34. PubMed ID: 25849846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade.
    Chen IX; Newcomer K; Pauken KE; Juneja VR; Naxerova K; Wu MW; Pinter M; Sen DR; Singer M; Sharpe AH; Jain RK
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23684-23694. PubMed ID: 32907939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NR0B2 re-educates myeloid immune cells to reduce regulatory T cell expansion and progression of breast and other solid tumors.
    Vidana Gamage HE; Shahoei SH; Wang Y; Jacquin E; Weisser E; Bautista RO; Henn MA; Schane CP; Nelczyk AT; Ma L; Das Gupta A; Bendre SV; Nguyen T; Tiwari S; Tjoanda E; Krawczynska N; He S; Albright ST; Farmer R; Smith AJ; Fink EC; Chen H; Sverdlov M; Gann PH; Boidot R; Vegran F; Fanning SW; Hergenrother PJ; Apetoh L; Nelson ER
    Cancer Lett; 2024 Aug; 597():217042. PubMed ID: 38908543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Dimensional Characterization of the Systemic Immune Landscape Informs on Synergism Between Radiation Therapy and Immune Checkpoint Blockade.
    Chua KLM; Fehlings M; Yeo ELL; Nardin A; Sumatoh H; Chu PL; Nei WL; Ong EHW; Woo WY; Low KP; Wang H; Poon DJJ; Liang ZG; Yao K; Huang L; Toh CK; Ang MK; Farid M; Cheng XM; Kanesvaran R; Dent R; Wee JTS; Lim TKH; Iyer NG; Tan DSW; Soo KC; Newell EW; Chua MLK
    Int J Radiat Oncol Biol Phys; 2020 Sep; 108(1):70-80. PubMed ID: 32544576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of NR0B2 as a therapeutic target for the re-education of tumor associated myeloid cells.
    Vidana Gamage HE; Albright ST; Smith AJ; Farmer R; Shahoei SH; Wang Y; Fink EC; Jacquin E; Weisser E; Bautista RO; Henn MA; Schane CP; Nelczyk AT; Ma L; Das Gupta A; Bendre SV; Nguyen T; Tiwari S; Krawczynska N; He S; Tjoanda E; Chen H; Sverdlov M; Gann PH; Boidot R; Vegran F; Fanning SW; Apetoh L; Hergenrother PJ; Nelson ER
    Cancer Lett; 2024 Aug; 597():217086. PubMed ID: 38944231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.