These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37089461)

  • 41. Physicochemical characterization, adsorption function and prebiotic effect of chitin-glucan complex from mushroom Coprinus comatus.
    Zhang Z; Zhao L; Qu H; Zhou H; Yang H; Chen H
    Int J Biol Macromol; 2022 May; 206():255-263. PubMed ID: 35240205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hypoglycemic Activity of Polysaccharide from Fruiting Bodies of the Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Higher Basidiomycetes), on Mice Induced by Alloxan and Its Potential Mechanism.
    Zhou S; Liu Y; Yang Y; Tang Q; Zhang J
    Int J Med Mushrooms; 2015; 17(10):957-64. PubMed ID: 26756187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First Report of Binucleate
    Lee JG; Paul NC; Park S; Kim HJ; Sang H
    Plant Dis; 2022 Dec; ():. PubMed ID: 36548915
    [No Abstract]   [Full Text] [Related]  

  • 44. Positioning of nuclei in the secondary Mycelium of Schizophyllum commune in relation to differential gene expression.
    Schuurs TA; Dalstra HJ; Scheer JM; Wessels JG
    Fungal Genet Biol; 1998 Mar; 23(2):150-61. PubMed ID: 9578628
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The A mating type and blue light regulate all known differentiation processes in the basidiomycete Coprinus cinereus.
    Kües U; Granado JD; Hermann R; Boulianne RP; Kertesz-Chaloupková K; Aebi M
    Mol Gen Genet; 1998 Oct; 260(1):81-91. PubMed ID: 9829831
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Isolation and biological activity of triglycerides of the fermented mushroom of Coprinus Comatus.
    Ren J; Shi JL; Han CC; Liu ZQ; Guo JY
    BMC Complement Altern Med; 2012 Apr; 12():52. PubMed ID: 22531110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Mechanism of Heterokaryotic Growth in VERTICILLIUM DAHLIAE.
    Puhalla JE; Mayfield JE
    Genetics; 1974 Mar; 76(3):411-22. PubMed ID: 17248647
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes.
    Luo H; Liu Y; Fang L; Li X; Tang N; Zhang K
    Appl Environ Microbiol; 2007 Jun; 73(12):3916-23. PubMed ID: 17449690
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new variant produced by Rhizoctonia solani AG1-IC isolate CH-1 with a new type of nuclei.
    Tsai YN; Ko WH
    Bot Stud; 2014 Dec; 55(1):69. PubMed ID: 28510948
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Imbalanced nuclear ratios, post-germination mortality and phenotype-genotype relationships in allopatrically-derived heterokaryons of Heterobasidion annosum.
    Ramsdale M; Rayner ADM
    New Phytol; 1996 Jun; 133(2):303-319. PubMed ID: 29681067
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimal Conditions for the Mycelial Growth of Coprinus comatus Strains.
    Jang MJ; Lee YH; Liu JJ; Ju YC
    Mycobiology; 2009 Jun; 37(2):103-8. PubMed ID: 23983517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel laccase with potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from mycelia of mushroom Coprinus comatus.
    Zhao S; Rong CB; Kong C; Liu Y; Xu F; Miao QJ; Wang SX; Wang HX; Zhang GQ
    Biomed Res Int; 2014; 2014():417461. PubMed ID: 25540778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nutrients and non-nutrients composition and bioactivity of wild and cultivated Coprinus comatus (O.F.Müll.) Pers.
    Stojković D; Reis FS; Barros L; Glamočlija J; Ćirić A; van Griensven LJ; Soković M; Ferreira IC
    Food Chem Toxicol; 2013 Sep; 59():289-96. PubMed ID: 23793036
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation of fungal homokaryotic lines from heterokaryotic transformants by sonic disruption of mycelia.
    Bashi ZD; Khachatourians G; Hegedus DD
    Biotechniques; 2010 Jan; 48(1):41-6. PubMed ID: 20078426
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Breeding experiments with strain 59 c, a strain of mushrooms having a new type of fruiting body : II. Cytological investigations].
    Fritsche G
    Theor Appl Genet; 1972 Jan; 42(1):44-50. PubMed ID: 24430682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heterologous diploid nuclei in the violet root rot fungus, Helicobasidium mompa.
    Aimi T; Iwasaki Y; Kano S; Yotsutani Y; Morinaga T
    Mycol Res; 2003 Sep; 107(Pt 9):1060-8. PubMed ID: 14563133
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia.
    Ulziijargal E; Mau JL
    Int J Med Mushrooms; 2011; 13(4):343-9. PubMed ID: 22164764
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strengthening detoxication impacts of Coprinus comatus on nickel and fluoranthene co-contaminated soil by bacterial inoculation.
    Tang X; Liu B; Deng Q; Zhang R; Li X; Xu H
    J Environ Manage; 2018 Jan; 206():633-641. PubMed ID: 29132086
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development.
    Inada K; Morimoto Y; Arima T; Murata Y; Kamada T
    Genetics; 2001 Jan; 157(1):133-40. PubMed ID: 11139497
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heterokaryon formation in Thanatephorus cucumeris anastomosis group 2-2 IV.
    Toda T; Hyakumachi M
    Mycologia; 2006; 98(5):726-36. PubMed ID: 17256576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.