These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37089628)

  • 1. Taxonomic revision of the
    Hoshino T; Tkachenko OB; Tojo M; Tronsmo AM; Kasuya T; Matsumoto N
    Mycoscience; 2022; 63(3):118-130. PubMed ID: 37089628
    [No Abstract]   [Full Text] [Related]  

  • 2. Aggressiveness of Typhula ishikariensis Isolates to Cultivars of Bentgrass Species (Agrostis spp.) Under Controlled Environment Conditions.
    Chang SW; Chang TH; Tredway L; Jung G
    Plant Dis; 2006 Jul; 90(7):951-956. PubMed ID: 30781036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of Typhula spp. and Typhula ishikariensis Varieties in Wisconsin, Utah, Michigan, and Minnesota.
    Chang SW; Scheef E; Abler RA; Thomson S; Johnson P; Jung G
    Phytopathology; 2006 Sep; 96(9):926-33. PubMed ID: 18944047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sclerotia of Typhula ishikariensis biotype B (Typhulaceae) from archaeological sites (4000 to 400 BP) in Hokkaido, northern Japan.
    Matsumoto N; Hoshino T; Yamada G; Kawakami A; Takada-Hoshino Y
    Am J Bot; 2010 Mar; 97(3):433-7. PubMed ID: 21622406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life Cycle Plasticity in
    Hoshino T; Yajima Y; Degawa Y; Kume A; Tkachenko OB; Matsumoto N
    Microorganisms; 2023 Aug; 11(8):. PubMed ID: 37630589
    [No Abstract]   [Full Text] [Related]  

  • 6. The first linkage map of the plant-pathogenic basidiomycete Typhula ishikariensis.
    Chang SW; Jung G
    Genome; 2008 Feb; 51(2):128-36. PubMed ID: 18356947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic origins and family classification of typhuloid fungi, with emphasis on
    Olariaga I; Huhtinen S; Læssøe T; Petersen JH; Hansen K
    Stud Mycol; 2020 Jun; 96():155-184. PubMed ID: 32774511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis.
    Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T
    FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogenicity and Formulation of Typhula phacorrhiza, a Biocontrol Agent of Gray Snow Mold.
    Wu C; Hsiang T
    Plant Dis; 1998 Sep; 82(9):1003-1006. PubMed ID: 30856825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Cold-Hardening and Soil Matric Potential on Resistance to Speckled Snow Mold in Wheat.
    Nishio Z; Iriki N; Takata K; Ito M; Tabiki T; Murray TD
    Plant Dis; 2008 Jul; 92(7):1021-1025. PubMed ID: 30769520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ice nucleation and antifreeze activities in pathogenesis and growth of snow molds.
    Snider CS; Hsiang T; Zhao G; Griffith M
    Phytopathology; 2000 Apr; 90(4):354-61. PubMed ID: 18944584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fertile sporophore production of Typhula phacorrhiza in the field is related to temperatures near freezing.
    Yang Y; Chen F; Hsiang T
    Can J Microbiol; 2006 Jan; 52(1):9-15. PubMed ID: 16541154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat.
    Sasaki K; Kuwabara C; Umeki N; Fujioka M; Saburi W; Matsui H; Abe F; Imai R
    J Biotechnol; 2016 Jun; 228():3-7. PubMed ID: 27080445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graminan breakdown by fructan exohydrolase induced in winter wheat inoculated with snow mold.
    Kawakami A; Yoshida M
    J Plant Physiol; 2012 Feb; 169(3):294-302. PubMed ID: 21983139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping QTL conferring speckled snow mold resistance in winter wheat (
    Nishio Z; Iriki N; Ito M; Tabiki T; Murray T
    Breed Sci; 2020 Apr; 70(2):246-252. PubMed ID: 32523407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus.
    Cheng J; Hanada Y; Miura A; Tsuda S; Kondo H
    Biochem J; 2016 Nov; 473(21):4011-4026. PubMed ID: 27613857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in Bentgrass Susceptibility to Typhula incarnata and in Isolate Aggressiveness Under Controlled Environment Conditions.
    Chang SW; Chang TH; Abler RAB; Jung G
    Plant Dis; 2007 Apr; 91(4):446-452. PubMed ID: 30781188
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Yajima Y; Tojo M; Chen B; Hoshino T
    Mycology; 2017; 8(3):147-152. PubMed ID: 30123636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice-binding proteins from enoki and shiitake mushrooms.
    Raymond JA; Janech MG
    Cryobiology; 2009 Apr; 58(2):151-6. PubMed ID: 19121299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance of Closely Mown Fine Fescue and Bentgrass Species to Snow Mold Pathogens.
    Gregos J; Casler MD; Stier JC
    Plant Dis; 2011 Jul; 95(7):847-852. PubMed ID: 30731740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.