These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37090025)

  • 21. Coherent Integration Method Based on Radon-NUFFT for Moving Target Detection Using Frequency Agile Radar.
    Pan J; Zhu Q; Bao Q; Chen Z
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography.
    Chan KK; Tang S
    Opt Express; 2011 Dec; 19(27):26891-904. PubMed ID: 22274272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerated quantification of tissue sodium concentration in skeletal muscle tissue: quantitative capability of dictionary learning compressed sensing.
    Utzschneider M; Behl NGR; Lachner S; Gast LV; Maier A; Uder M; Nagel AM
    MAGMA; 2020 Aug; 33(4):495-505. PubMed ID: 31950390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. J-MoDL: Joint Model-Based Deep Learning for Optimized Sampling and Reconstruction.
    Aggarwal HK; Jacob M
    IEEE J Sel Top Signal Process; 2020 Oct; 14(6):1151-1162. PubMed ID: 33613806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Density compensation functions for spiral MRI.
    Hoge RD; Kwan RK; Pike GB
    Magn Reson Med; 1997 Jul; 38(1):117-28. PubMed ID: 9211387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compressed sensing reconstruction of cardiac cine MRI using golden angle spiral trajectories.
    Tolouee A; Alirezaie J; Babyn P
    J Magn Reson; 2015 Nov; 260():10-9. PubMed ID: 26397216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction.
    Zhou B; Schlemper J; Dey N; Mohseni Salehi SS; Sheth K; Liu C; Duncan JS; Sofka M
    Med Image Anal; 2022 Oct; 81():102538. PubMed ID: 35926336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves.
    Kan Y; Zhu Y; Tang L; Fu Q; Pei H
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NonCartesian MR image reconstruction with integrated gradient nonlinearity correction.
    Tao S; Trzasko JD; Shu Y; Huston J; Johnson KM; Weavers PT; Gray EM; Bernstein MA
    Med Phys; 2015 Dec; 42(12):7190-201. PubMed ID: 26632073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structured errors in reconstruction methods for Non-Cartesian MR data.
    Gibiino F; Positano V; Wiesinger F; Giovannetti G; Landini L; Santarelli MF
    Comput Biol Med; 2013 Dec; 43(12):2256-62. PubMed ID: 24290942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parallel Magnetic Resonance Imaging as Approximation in a Reproducing Kernel Hilbert Space.
    Athalye V; Lustig M; Uecker M
    Inverse Probl; 2015 Apr; 31(4):045008. PubMed ID: 25983363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.
    Xiao Y; Tang X; Qin Y; Peng H; Wang W; Zhong L
    J Opt Soc Am A Opt Image Sci Vis; 2016 Oct; 33(10):2027-2033. PubMed ID: 27828106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.
    Tamhane AA; Anastasio MA; Gui M; Arfanakis K
    J Magn Reson Imaging; 2010 Jul; 32(1):211-7. PubMed ID: 20578028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction.
    Liao C; Bilgic B; Manhard MK; Zhao B; Cao X; Zhong J; Wald LL; Setsompop K
    Neuroimage; 2017 Nov; 162():13-22. PubMed ID: 28842384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning-based method for k-space trajectory design in MRI.
    Sharma S; Hari KVS; Leus G
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1464-1467. PubMed ID: 36086415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional dictionary-learning reconstruction of (23)Na MRI data.
    Behl NG; Gnahm C; Bachert P; Ladd ME; Nagel AM
    Magn Reson Med; 2016 Apr; 75(4):1605-16. PubMed ID: 25989746
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform.
    Sarty GE; Bennett R; Cox RW
    Magn Reson Med; 2001 May; 45(5):908-15. PubMed ID: 11323818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An efficient non-iterative reconstruction algorithm for parallel MRI with arbitrary k-space trajectories.
    Ying L; Haldar J; Liang ZP
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():1344-7. PubMed ID: 17282445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Joint optimization of Cartesian sampling patterns and reconstruction for single-contrast and multi-contrast fast magnetic resonance imaging.
    Wang J; Yang Q; Yang Q; Xu L; Cai C; Cai S
    Comput Methods Programs Biomed; 2022 Nov; 226():107150. PubMed ID: 36183640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.