These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37090251)

  • 1. Insights to improve the activity of glycosyl phosphorylases from Ruminococcus
    Storani A; Guerrero SA; Iglesias AA
    Front Chem; 2023; 11():1176537. PubMed ID: 37090251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group.
    Sawano T; Saburi W; Hamura K; Matsui H; Mori H
    FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylase-catalyzed bottom-up synthesis of short-chain soluble cello-oligosaccharides and property-tunable cellulosic materials.
    Nidetzky B; Zhong C
    Biotechnol Adv; 2021 Nov; 51():107633. PubMed ID: 32966861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase.
    Kawahara R; Saburi W; Odaka R; Taguchi H; Ito S; Mori H; Matsui H
    J Biol Chem; 2012 Dec; 287(50):42389-99. PubMed ID: 23093406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity.
    Wu Y; Mao G; Fan H; Song A; Zhang YP; Chen H
    Sci Rep; 2017 Jul; 7(1):4849. PubMed ID: 28687766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering cascade biocatalysis in whole cells for bottom-up synthesis of cello-oligosaccharides: flux control over three enzymatic steps enables soluble production.
    Schwaiger KN; Voit A; Wiltschi B; Nidetzky B
    Microb Cell Fact; 2022 Apr; 21(1):61. PubMed ID: 35397553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous process technology for bottom-up synthesis of soluble cello-oligosaccharides by immobilized cells co-expressing three saccharide phosphorylases.
    Schwaiger KN; Nidetzky B
    Microb Cell Fact; 2022 Dec; 21(1):265. PubMed ID: 36536394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis.
    Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Enzyme Phosphorylase Cascade for Integrated Production of Short-Chain Cellodextrins.
    Zhong C; Nidetzky B
    Biotechnol J; 2020 Mar; 15(3):e1900349. PubMed ID: 31677345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.
    Devendran S; Abdel-Hamid AM; Evans AF; Iakiviak M; Kwon IH; Mackie RI; Cann I
    Sci Rep; 2016 Oct; 6():35342. PubMed ID: 27748409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic modeling of phosphorylase-catalyzed iterative β-1,4-glycosylation for degree of polymerization-controlled synthesis of soluble cello-oligosaccharides.
    Klimacek M; Zhong C; Nidetzky B
    Biotechnol Biofuels; 2021 Jun; 14(1):134. PubMed ID: 34112242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase.
    Hiraishi M; Igarashi K; Kimura S; Wada M; Kitaoka M; Samejima M
    Carbohydr Res; 2009 Dec; 344(18):2468-73. PubMed ID: 19879558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium.
    Reichenbecher M; Lottspeich F; Bronnenmeier K
    Eur J Biochem; 1997 Jul; 247(1):262-7. PubMed ID: 9249035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of cellobiose phosphorylase for the defined synthesis of cellotriose.
    Ubiparip Z; Moreno DS; Beerens K; Desmet T
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8327-8337. PubMed ID: 32803296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis.
    Christopherson MR; Dawson JA; Stevenson DM; Cunningham AC; Bramhacharya S; Weimer PJ; Kendziorski C; Suen G
    BMC Genomics; 2014 Dec; 15(1):1066. PubMed ID: 25477200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellobiose and cellodextrin metabolism by the ruminal bacterium Ruminococcus albus.
    Lou J; Dawson KA; Strobel HJ
    Curr Microbiol; 1997 Oct; 35(4):221-7. PubMed ID: 9290062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the functionality of the N-terminal domain in xylanase 10A from Ruminococcus albus 8.
    Storani A; Guerrero SA; Iglesias AA
    Enzyme Microb Technol; 2020 Dec; 142():109673. PubMed ID: 33220861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis.
    Hamura K; Saburi W; Matsui H; Mori H
    Carbohydr Res; 2013 Sep; 379():21-5. PubMed ID: 23845516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme.
    Ito S; Taguchi H; Hamada S; Kawauchi S; Ito H; Senoura T; Watanabe J; Nishimukai M; Ito S; Matsui H
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):433-41. PubMed ID: 18392616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.