These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37090258)

  • 41. Characterization of local pH changes in brain using fast-scan cyclic voltammetry with carbon microelectrodes.
    Takmakov P; Zachek MK; Keithley RB; Bucher ES; McCarty GS; Wightman RM
    Anal Chem; 2010 Dec; 82(23):9892-900. PubMed ID: 21047096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitation of in vivo measurements with carbon fiber microelectrodes.
    Logman MJ; Budygin EA; Gainetdinov RR; Wightman RM
    J Neurosci Methods; 2000 Feb; 95(2):95-102. PubMed ID: 10752479
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry.
    Johnson JA; Hobbs CN; Wightman RM
    Anal Chem; 2017 Jun; 89(11):6166-6174. PubMed ID: 28488873
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Subsecond detection of physiological adenosine concentrations using fast-scan cyclic voltammetry.
    Swamy BE; Venton BJ
    Anal Chem; 2007 Jan; 79(2):744-50. PubMed ID: 17222045
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing electric fields inside microfluidic channels during electroosmotic flow with fast-scan cyclic voltammetry.
    Forry SP; Murray JR; Heien ML; Locascio LE; Wightman RM
    Anal Chem; 2004 Sep; 76(17):4945-50. PubMed ID: 15373427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct Detection of DNA and RNA on Carbon Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry.
    Asrat TM; Cho W; Liu FA; Shapiro SM; Bracht JR; Zestos AG
    ACS Omega; 2021 Mar; 6(10):6571-6581. PubMed ID: 33748569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purine Functional Group Type and Placement Modulate the Interaction with Carbon-Fiber Microelectrodes.
    Lim GN; Ross AE
    ACS Sens; 2019 Feb; 4(2):479-487. PubMed ID: 30657307
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temporal differentiation of pH-dependent capacitive current from dopamine.
    Yoshimi K; Weitemier A
    Anal Chem; 2014 Sep; 86(17):8576-84. PubMed ID: 25105214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast scan cyclic voltammetry as a novel method for detection of real-time gonadotropin-releasing hormone release in mouse brain slices.
    Glanowska KM; Venton BJ; Moenter SM
    J Neurosci; 2012 Oct; 32(42):14664-9. PubMed ID: 23077052
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.
    Nguyen MD; Venton BJ
    Comput Struct Biotechnol J; 2015; 13():47-54. PubMed ID: 26900429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Bidirectional-Current CMOS Potentiostat for Fast-Scan Cyclic Voltammetry Detector Arrays.
    Dorta-Quinones CI; Huang M; Ruelas JC; Delacruz J; Apsel AB; Minch BA; Lindau M
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):894-903. PubMed ID: 29994774
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-time chemical measurements of dopamine release in the brain.
    Roberts JG; Lugo-Morales LZ; Loziuk PL; Sombers LA
    Methods Mol Biol; 2013; 964():275-94. PubMed ID: 23296789
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A baseline drift detrending technique for fast scan cyclic voltammetry.
    DeWaele M; Oh Y; Park C; Kang YM; Shin H; Blaha CD; Bennet KE; Kim IY; Lee KH; Jang DP
    Analyst; 2017 Nov; 142(22):4317-4321. PubMed ID: 29063091
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry.
    Castagnola E; Thongpang S; Hirabayashi M; Nava G; Nimbalkar S; Nguyen T; Lara S; Oyawale A; Bunnell J; Moritz C; Kassegne S
    Analyst; 2021 Jun; 146(12):3955-3970. PubMed ID: 33988202
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Graphene-Fiber Microelectrodes for Ultrasensitive Neurochemical Detection.
    Li Y; Jarosova R; Weese-Myers ME; Ross AE
    Anal Chem; 2022 Mar; 94(11):4803-4812. PubMed ID: 35274933
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation.
    Chang SY; Kimble CJ; Kim I; Paek SB; Kressin KR; Boesche JB; Whitlock SV; Eaker DR; Kasasbeh A; Horne AE; Blaha CD; Bennet KE; Lee KH
    J Neurosurg; 2013 Dec; 119(6):1556-65. PubMed ID: 24116724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A simplified LED-driven switch for fast-scan controlled-adsorption voltammetry instrumentation.
    Robke R; Hashemi P; Ramsson E
    HardwareX; 2019 Apr; 5():. PubMed ID: 34113744
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Drift Subtraction for Fast-Scan Cyclic Voltammetry Using Double-Waveform Partial-Least-Squares Regression.
    Meunier CJ; McCarty GS; Sombers LA
    Anal Chem; 2019 Jun; 91(11):7319-7327. PubMed ID: 31081629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simulation of Fast-Scan Nanogap Voltammetry at Double-Cylinder Ultramicroelectrodes.
    Pathirathna P; Balla RJ; Amemiya S
    J Electrochem Soc; 2018; 165(12):G3026-G3032. PubMed ID: 31156270
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Subsecond detection of guanosine using fast-scan cyclic voltammetry.
    Cryan MT; Ross AE
    Analyst; 2018 Dec; 144(1):249-257. PubMed ID: 30484441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.