BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37090679)

  • 1. Synthetic lethality of
    Xu Y; Ehrt S; Schnappinger D; Beites T
    bioRxiv; 2023 Apr; ():. PubMed ID: 37090679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic lethality of
    Xu Y; Ehrt S; Schnappinger D; Beites T
    mBio; 2023 Nov; 14(6):e0104523. PubMed ID: 38032200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type 2 NADH Dehydrogenase Is the Only Point of Entry for Electrons into the Streptococcus agalactiae Respiratory Chain and Is a Potential Drug Target.
    Lencina AM; Franza T; Sullivan MJ; Ulett GC; Ipe DS; Gaudu P; Gennis RB; Schurig-Briccio LA
    mBio; 2018 Jul; 9(4):. PubMed ID: 29970468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and Mycobacterium tuberculosis: Structure-Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization.
    Murugesan D; Ray PC; Bayliss T; Prosser GA; Harrison JR; Green K; Soares de Melo C; Feng TS; Street LJ; Chibale K; Warner DF; Mizrahi V; Epemolu O; Scullion P; Ellis L; Riley J; Shishikura Y; Ferguson L; Osuna-Cabello M; Read KD; Green SR; Lamprecht DA; Finin PM; Steyn AJC; Ioerger TR; Sacchettini J; Rhee KY; Arora K; Barry CE; Wyatt PG; Boshoff HIM
    ACS Infect Dis; 2018 Jun; 4(6):954-969. PubMed ID: 29522317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The global motion affecting electron transfer in Plasmodium falciparum type II NADH dehydrogenases: a novel non-competitive mechanism for quinoline ketone derivative inhibitors.
    Xie T; Wu Z; Gu J; Guo R; Yan X; Duan H; Liu X; Liu W; Liang L; Wan H; Luo Y; Tang D; Shi H; Hu J
    Phys Chem Chem Phys; 2019 Aug; 21(33):18105-18118. PubMed ID: 31396604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of the two type II NADH dehydrogenases in the survival of Mycobacterium tuberculosis in vitro.
    Awasthy D; Ambady A; Narayana A; Morayya S; Sharma U
    Gene; 2014 Oct; 550(1):110-6. PubMed ID: 25128581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 8. Plasticity of
    Vilchèze C; Weinrick B; Leung LW; Jacobs WR
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1599-1604. PubMed ID: 29382761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycobacterium tuberculosis type II NADH-menaquinone oxidoreductase catalyzes electron transfer through a two-site ping-pong mechanism and has two quinone-binding sites.
    Yano T; Rahimian M; Aneja KK; Schechter NM; Rubin H; Scott CP
    Biochemistry; 2014 Feb; 53(7):1179-90. PubMed ID: 24447297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis.
    Gyan S; Shiohira Y; Sato I; Takeuchi M; Sato T
    J Bacteriol; 2006 Oct; 188(20):7062-71. PubMed ID: 17015645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity.
    Harbut MB; Yang B; Liu R; Yano T; Vilchèze C; Cheng B; Lockner J; Guo H; Yu C; Franzblau SG; Petrassi HM; Jacobs WR; Rubin H; Chatterjee AK; Wang F
    Angew Chem Int Ed Engl; 2018 Mar; 57(13):3478-3482. PubMed ID: 29388301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery.
    Sellamuthu S; Singh M; Kumar A; Singh SK
    Expert Opin Ther Targets; 2017 Jun; 21(6):559-570. PubMed ID: 28472892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of alternative NADH dehydrogenases (NDH-2) in the phytopathogenic fungus
    Matuz-Mares D; Matus-Ortega G; Cárdenas-Monroy C; Romero-Aguilar L; Villalobos-Rocha JC; Vázquez-Meza H; Guerra-Sánchez G; Peña-Díaz A; Pardo JP
    FEBS Open Bio; 2018 Aug; 8(8):1267-1279. PubMed ID: 30221129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antitubercular activity of 2-mercaptobenzothiazole derivatives targeting
    Saha P; Sau S; Kalia NP; Sharma DK
    RSC Med Chem; 2024 May; 15(5):1664-1674. PubMed ID: 38784457
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines.
    Schurig-Briccio LA; Yano T; Rubin H; Gennis RB
    Biochim Biophys Acta; 2014 Jul; 1837(7):954-63. PubMed ID: 24709059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tricyclic SpiroLactams Kill Mycobacteria In Vitro and In Vivo by Inhibiting Type II NADH Dehydrogenases.
    Dam S; Tangara S; Hamela C; Hattabi T; Faïon L; Carre P; Antoine R; Herledan A; Leroux F; Piveteau C; Eveque M; Flipo M; Deprez B; Kremer L; Willand N; Villemagne B; Hartkoorn RC
    J Med Chem; 2022 Dec; 65(24):16651-16664. PubMed ID: 36473699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2).
    Yano T; Li LS; Weinstein E; Teh JS; Rubin H
    J Biol Chem; 2006 Apr; 281(17):11456-63. PubMed ID: 16469750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tellurite-mediated damage to the Escherichia coli NDH-dehydrogenases and terminal oxidases in aerobic conditions.
    Díaz-Vásquez WA; Abarca-Lagunas MJ; Cornejo FA; Pinto CA; Arenas FA; Vásquez CC
    Arch Biochem Biophys; 2015 Jan; 566():67-75. PubMed ID: 25447814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration.
    Howitt CA; Udall PK; Vermaas WF
    J Bacteriol; 1999 Jul; 181(13):3994-4003. PubMed ID: 10383967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.
    Tsuge Y; Uematsu K; Yamamoto S; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Jul; 99(13):5573-82. PubMed ID: 25808520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.