These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37090803)

  • 1. Layer-dependent stability of intracortical recordings and neuronal cell loss.
    Urdaneta ME; Kunigk NG; PeƱaloza-Aponte JD; Currlin S; Malone IG; Fried SI; Otto KJ
    Front Neurosci; 2023; 17():1096097. PubMed ID: 37090803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Long-Term Stability of Intracortical Microstimulation and the Foreign Body Response Are Layer Dependent.
    Urdaneta ME; Kunigk NG; Currlin S; Delgado F; Fried SI; Otto KJ
    Front Neurosci; 2022; 16():908858. PubMed ID: 35769707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice.
    Chen K; Forrest AM; Burgos GG; Kozai TDY
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38788704
    [No Abstract]   [Full Text] [Related]  

  • 4. The Role of Electrode-Site Placement in the Long-Term Stability of Intracortical Microstimulation.
    Saldanha RL; Urdaneta ME; Otto KJ
    Front Neurosci; 2021; 15():712578. PubMed ID: 34566563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance.
    Nolta NF; Christensen MB; Crane PD; Skousen JL; Tresco PA
    Biomaterials; 2015; 53():753-62. PubMed ID: 25890770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing Behavioral Detection Thresholds per Electrode
    Kunigk NG; Urdaneta ME; Malone IG; Delgado F; Otto KJ
    Front Neurosci; 2022; 16():876142. PubMed ID: 35784835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deployable, liquid crystal elastomer-based intracortical probes.
    Rihani RT; Stiller AM; Usoro JO; Lawson J; Kim H; Black BJ; Danda VR; Maeng J; Varner VD; Ware TH; Pancrazio JJ
    Acta Biomater; 2020 Jul; 111():54-64. PubMed ID: 32428679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient.
    Szymanski LJ; Kellis S; Liu CY; Jones KT; Andersen RA; Commins D; Lee B; McCreery DB; Miller CA
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34314384
    [No Abstract]   [Full Text] [Related]  

  • 11. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays.
    Biran R; Martin DC; Tresco PA
    Exp Neurol; 2005 Sep; 195(1):115-26. PubMed ID: 16045910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates.
    Barrese JC; Rao N; Paroo K; Triebwasser C; Vargas-Irwin C; Franquemont L; Donoghue JP
    J Neural Eng; 2013 Dec; 10(6):066014. PubMed ID: 24216311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal functional connectivity is impaired in a layer dependent manner near the chronically implanted microelectrodes.
    Chen K; Forrest A; Gonzalez Burgos G; Kozai TDY
    bioRxiv; 2023 Nov; ():. PubMed ID: 37986883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracortical microstimulation differentially activates cortical layers based on stimulation depth.
    Voigt MB; Hubka P; Kral A
    Brain Stimul; 2017; 10(3):684-694. PubMed ID: 28284918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on "An Integrated Brain-Machine Interface Platform With Thousands of Channels".
    Kirsch RF; Ajiboye AB; Miller JP
    J Med Internet Res; 2019 Oct; 21(10):e16339. PubMed ID: 31674921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates.
    Barrese JC; Aceros J; Donoghue JP
    J Neural Eng; 2016 Apr; 13(2):026003. PubMed ID: 26824680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of genes involved in the chronic response to intracortical microelectrodes.
    Song S; Druschel LN; Chan ER; Capadona JR
    Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Implantation Depth on the Performance of Intracortical Probe Recording Sites.
    Usoro JO; Dogra K; Abbott JR; Radhakrishna R; Cogan SF; Pancrazio JJ; Patnaik SS
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of site placement within silicon microelectrodes on the long-term electrophysiological recordings.
    Lee HC; Gaire J; McDowell SP; Otto KJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():465-8. PubMed ID: 25569997
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.