These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37091232)

  • 1. An atomically smooth container: Can the native oxide promote supercooling of liquid gallium?
    Joshipura ID; Nguyen CK; Quinn C; Yang J; Morales DH; Santiso E; Daeneke T; Truong VK; Dickey MD
    iScience; 2023 Apr; 26(4):106493. PubMed ID: 37091232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable Thermal Regulation of Electronics via Mitigated Supercooling of Porous Gallium-Based Phase Change Materials.
    Ki S; Shin S; Cho S; Bang S; Choi D; Nam Y
    Adv Sci (Weinh); 2024 Jun; 11(23):e2310185. PubMed ID: 38634574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species.
    Fujikawa S; Kuroda K
    Micron; 2000 Dec; 31(6):669-86. PubMed ID: 10838028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular ice formation in yeast cells vs. cooling rate: predictions from modeling vs. experimental observations by differential scanning calorimetry.
    Seki S; Kleinhans FW; Mazur P
    Cryobiology; 2009 Apr; 58(2):157-65. PubMed ID: 19118541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GaOOH Crystallite Growth on Liquid Metal Microdroplets in Water: Influence of the Local Environment.
    Gan T; Handschuh-Wang S; Shang W; Zhou X
    Langmuir; 2022 Nov; 38(47):14475-14484. PubMed ID: 36383709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercooling-Promoting (Anti-ice Nucleation) Substances.
    Fujikawa S; Kuwabara C; Kasuga J; Arakawa K
    Adv Exp Med Biol; 2018; 1081():289-320. PubMed ID: 30288716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant Decrease in Interfacial Energy of Liquid Metals by Native Oxides.
    Jung W; Vong MH; Kwon K; Kim JU; Kwon SJ; Kim TI; Dickey MD
    Adv Mater; 2024 Nov; 36(48):e2406783. PubMed ID: 39388528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing the Rheological Properties of Liquid Metals To Shape Soft Electronic Conductors for Wearable Applications.
    Hirsch A; Dejace L; Michaud HO; Lacour SP
    Acc Chem Res; 2019 Mar; 52(3):534-544. PubMed ID: 30714364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of inorganic liquid gallium particle-manganese oxide composites.
    Cai S; Ghasemian MB; Rahim MA; Baharfar M; Yang J; Tang J; Kalantar-Zadeh K; Allioux FM
    Nanoscale; 2023 Mar; 15(9):4291-4300. PubMed ID: 36745406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the deep supercooling ability of an Alaskan beetle, Cucujus clavipes puniceus, via high throughput proteomics.
    Carrasco MA; Buechler SA; Arnold RJ; Sformo T; Barnes BM; Duman JG
    J Proteomics; 2012 Feb; 75(4):1220-34. PubMed ID: 22094879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal stability of surface freezing films in Ga-based alloys: an x-ray photoelectron spectroscopy and scanning tunneling microscopy study.
    Halka V; Freyland W
    J Chem Phys; 2007 Jul; 127(3):034702. PubMed ID: 17655450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The supercooling ability of ticks (Acari, Ixodoidea).
    Dautel H; Knülle W
    J Comp Physiol B; 1996; 166(8):517-24. PubMed ID: 8981761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Two-Dimensional Liquid Structure Explains the Elevated Melting Temperatures of Gallium Nanoclusters.
    Steenbergen KG; Gaston N
    Nano Lett; 2016 Jan; 16(1):21-6. PubMed ID: 26624938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.
    Alam K; Foley A; Smith AR
    Nano Lett; 2015 Mar; 15(3):2079-85. PubMed ID: 25656811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Modification with Gallium Coating as Nonwetting Surfaces for Gallium-Based Liquid Metal Droplet Manipulation.
    Chen Z; Lee JB
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35488-35495. PubMed ID: 31483593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate-enhanced supercooling in AuSi eutectic droplets.
    Schülli TU; Daudin R; Renaud G; Vaysset A; Geaymond O; Pasturel A
    Nature; 2010 Apr; 464(7292):1174-7. PubMed ID: 20414305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold hardiness and supercooling along an altitudinal gradient in andean giant rosette species.
    Goldstein G; Rada F; Azocar A
    Oecologia; 1985 Dec; 68(1):147-152. PubMed ID: 28310924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of various degrees of supercooling and nucleation temperatures on fertility of frozen turkey spermatozoa.
    Zavos PM; Graham EF
    Cryobiology; 1983 Oct; 20(5):553-9. PubMed ID: 6627966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of primary cultures of mammalian somatic cells in 96-well plates benefits from control of ice nucleation.
    Daily MI; Whale TF; Partanen R; Harrison AD; Kilbride P; Lamb S; Morris GJ; Picton HM; Murray BJ
    Cryobiology; 2020 Apr; 93():62-69. PubMed ID: 32092295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis) leaf blades.
    Ishikawa M; Oda A; Fukami R; Kuriyama A
    Front Plant Sci; 2014; 5():791. PubMed ID: 25628635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.