BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37091239)

  • 1. Crabtree effect in kidney proximal tubule cells via late-stage glycolytic intermediates.
    Darshi M; Tumova J; Saliba A; Kim J; Baek J; Pennathur S; Sharma K
    iScience; 2023 Apr; 26(4):106462. PubMed ID: 37091239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triosephosphates as Intermediates of the Crabtree Effect.
    Sokolov SS; Markova OV; Nikolaeva KD; Fedorov IA; Severin FF
    Biochemistry (Mosc); 2017 Apr; 82(4):458-464. PubMed ID: 28371603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells.
    Song H; Yoon SP; Kim J
    Anat Cell Biol; 2016 Jun; 49(2):79-87. PubMed ID: 27382509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Pathology and Glycolytic Shift during Proximal Tubule Atrophy after Ischemic AKI.
    Lan R; Geng H; Singha PK; Saikumar P; Bottinger EP; Weinberg JM; Venkatachalam MA
    J Am Soc Nephrol; 2016 Nov; 27(11):3356-3367. PubMed ID: 27000065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Modeling of Crabtree Effect.
    Ghosh D; De RK
    Endocr Metab Immune Disord Drug Targets; 2017; 17(3):182-188. PubMed ID: 28847265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction?
    Díaz-Ruiz R; Avéret N; Araiza D; Pinson B; Uribe-Carvajal S; Devin A; Rigoulet M
    J Biol Chem; 2008 Oct; 283(40):26948-55. PubMed ID: 18682403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term starvation is a strategy to unravel the cellular capacity of oxidizing specific exogenous/endogenous substrates in mitochondria.
    Zeidler JD; Fernandes-Siqueira LO; Carvalho AS; Cararo-Lopes E; Dias MH; Ketzer LA; Galina A; Da Poian AT
    J Biol Chem; 2017 Aug; 292(34):14176-14187. PubMed ID: 28663370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNF1 controls the glycolytic flux and mitochondrial respiration.
    Martinez-Ortiz C; Carrillo-Garmendia A; Correa-Romero BF; Canizal-García M; González-Hernández JC; Regalado-Gonzalez C; Olivares-Marin IK; Madrigal-Perez LA
    Yeast; 2019 Aug; 36(8):487-494. PubMed ID: 31074533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of glycolysis-derived hexose phosphates in the induction of the Crabtree effect.
    Rosas Lemus M; Roussarie E; Hammad N; Mougeolle A; Ransac S; Issa R; Mazat JP; Uribe-Carvajal S; Rigoulet M; Devin A
    J Biol Chem; 2018 Aug; 293(33):12843-12854. PubMed ID: 29907566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor.
    Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR
    Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proximal tubule-derived exosomes contribute to mesangial cell injury in diabetic nephropathy via miR-92a-1-5p transfer.
    Tsai YC; Kuo MC; Hung WW; Wu PH; Chang WA; Wu LY; Lee SC; Hsu YL
    Cell Commun Signal; 2023 Jan; 21(1):10. PubMed ID: 36639674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose requirement for postischemic recovery of perfused working heart.
    Mallet RT; Hartman DA; Bünger R
    Eur J Biochem; 1990 Mar; 188(2):481-93. PubMed ID: 2318214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentative metabolism impedes p53-dependent apoptosis in a Crabtree-positive but not in Crabtree-negative yeast.
    Kumar A; Dandekar JU; Bhat PJ
    J Biosci; 2017 Dec; 42(4):585-601. PubMed ID: 29229877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae.
    Papini M; Nookaew I; Uhlén M; Nielsen J
    Microb Cell Fact; 2012 Oct; 11():136. PubMed ID: 23043429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose metabolism and the channeling of glycolytic intermediates in permeabilized L-929 cells.
    Clegg JS; Jackson SA
    Arch Biochem Biophys; 1990 May; 278(2):452-60. PubMed ID: 2109584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circumventing the Crabtree effect in cell culture: A systematic review.
    de Kok MJC; Schaapherder AF; Wüst RCI; Zuiderwijk M; Bakker JA; Lindeman JHN; Le Dévédec SE
    Mitochondrion; 2021 Jul; 59():83-95. PubMed ID: 33812964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Crabtree effect: a new look at the old problem.
    Wojtczak L
    Acta Biochim Pol; 1996; 43(2):361-8. PubMed ID: 8862181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cellular energy metabolism: the Crabtree effect.
    Sussman I; Erecińska M; Wilson DF
    Biochim Biophys Acta; 1980 Jul; 591(2):209-23. PubMed ID: 7397121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode of action of alpha-chlorohydrin as a male anti-fertility agent. Inhibition of the metabolism of ram spermatozoa by alpha-chlorohydrin and location of block in glycolysis.
    Brown-Woodman PD; Mohri H; Mohri T; Suter D; White IG
    Biochem J; 1978 Jan; 170(1):23-37. PubMed ID: 629780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.