BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37091376)

  • 1. The Waterborne Superamphiphobic Coatings with Antifouling, High Temperature Resistance, and Corrosion Resistance.
    Ren G; Qiao Z; Hui Z; Tuo Y; Zheng W; Chen X; Li S
    ACS Omega; 2023 Apr; 8(15):13578-13592. PubMed ID: 37091376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Robust Waterborne Superamphiphobic Coatings with Antifouling, Heat Insulation, and Anticorrosion.
    Qiao Z; Ren G; Chen X; Gao Y; Tuo Y; Lu C
    ACS Omega; 2023 Jan; 8(1):804-818. PubMed ID: 36643432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superamphiphobic and Electroactive Nanocomposite toward Self-Cleaning, Antiwear, and Anticorrosion Coatings.
    Yuan R; Wu S; Yu P; Wang B; Mu L; Zhang X; Zhu Y; Wang B; Wang H; Zhu J
    ACS Appl Mater Interfaces; 2016 May; 8(19):12481-93. PubMed ID: 27136103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale fabrication of waterborne superamphiphobic coatings for flexible applications.
    Zhang Y; Yao D; Wang S; Xiao Z; Yu X
    RSC Adv; 2018 Oct; 8(63):36375-36382. PubMed ID: 35558469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superamphiphobic Magnesium Alloys with Extraordinary Environmental Adaptability.
    Liu L; Li X; Lei J; Li L; Li N; Pan F
    Langmuir; 2021 Apr; 37(14):4267-4275. PubMed ID: 33780629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust Waterborne Superhydrophobic Coatings with Reinforced Composite Interfaces.
    Lin D; Zhang X; Yuan S; Li Y; Xu F; Wang X; Li C; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48216-48224. PubMed ID: 32993286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Durable superamphiphobic coatings with high static and dynamic repellency towards liquids with low surface tension and high viscosity.
    Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J
    J Colloid Interface Sci; 2020 Oct; 578():262-272. PubMed ID: 32531556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids.
    Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J
    J Colloid Interface Sci; 2019 Mar; 540():228-236. PubMed ID: 30641400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite.
    Zhang J; Wei J; Li B; Zhao X; Zhang J
    J Colloid Interface Sci; 2021 Jul; 594():836-847. PubMed ID: 33794405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable Preparation of Superamphiphobic Coatings with Ultralow Sliding Angles and High Liquid Impact Resistance.
    Dong S; Li Y; Tian N; Li B; Yang Y; Li L; Zhang J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41878-41882. PubMed ID: 30475584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Silica Size and Content on Superamphiphobic Properties of Silica-Fluoropolymer Core-Shell Coatings.
    Lee J; Hwang HS; Lo TNH; Koh WG; Park I
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33265976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy.
    Zhao X; Wei J; Li B; Li S; Tian N; Jing L; Zhang J
    J Colloid Interface Sci; 2020 Sep; 575():140-149. PubMed ID: 32361230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional Superamphiphobic Coating Based on Fluorinated TiO
    Huang X; Gao X; Wang X; Shang H; Zhou S
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorful Superamphiphobic Coatings with Low Sliding Angles and High Durability Based on Natural Nanorods.
    Dong J; Wang Q; Zhang Y; Zhu Z; Xu X; Zhang J; Wang A
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1941-1952. PubMed ID: 28001033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Preparation of Robust Superamphiphobic Coatings on Complex Substrates via Nonsolvent-Induced Phase Separation.
    Zhang R; Wei J; Tian N; Liang W; Zhang J
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49047-49058. PubMed ID: 36281879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Properties of Superhydrophobic Waterborne Polyurethane Composites with Micro-Rough Surface Structure Using Electrostatic Spraying.
    Wang F; Feng L; Li G; Zhai Z; Ma H; Deng B; Zhang S
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31653032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray-deposition and photopolymerization of organic-inorganic thiol-ene resins for fabrication of superamphiphobic surfaces.
    Xiong L; Kendrick LL; Heusser H; Webb JC; Sparks BJ; Goetz JT; Guo W; Stafford CM; Blanton MD; Nazarenko S; Patton DL
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10763-74. PubMed ID: 24911278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic Superamphiphobic Coatings and the Effect of Surface Microstructures on Superamphiphobicity.
    Liu G; Xia H; Zhang W; Lang L; Geng H; Song L; Niu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12509-12520. PubMed ID: 33653025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Mechanically Stable Superamphiphobic Coatings via Combining Phase Separation of Adhesive and Fluorinated SiO
    Wei J; Liang W; Zhang J
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Durable superamphiphobic coatings repelling both cool and hot liquids based on carbon nanotubes.
    Zhai N; Fan L; Li L; Zhang J
    J Colloid Interface Sci; 2017 Nov; 505():622-630. PubMed ID: 28651202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.