These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37091418)

  • 1. Coupled Lattice Boltzmann Modeling Framework for Pore-Scale Fluid Flow and Reactive Transport.
    Liu S; Barati R; Zhang C; Kazemi M
    ACS Omega; 2023 Apr; 8(15):13649-13669. PubMed ID: 37091418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Parallel Coupled Lattice Boltzmann-Volume of Fluid Framework for Modeling Porous Media Evolution.
    Alihussein H; Geier M; Krafczyk M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of multiscale lattice Boltzmann discrete-element method for reactive particle fluid flows.
    Maier ML; Patel RA; Prasianakis NI; Churakov SV; Nirschl H; Krause MJ
    Phys Rev E; 2021 Mar; 103(3-1):033306. PubMed ID: 33862794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.
    Karani H; Huber C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023304. PubMed ID: 25768633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffuse-interface lattice Boltzmann modeling of charged particle transport in Poiseuille flow.
    Liu J; Chai Z; Shi B
    Phys Rev E; 2022 Jul; 106(1-2):015306. PubMed ID: 35974528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Relaxation Time Lattice Boltzmann Method Coupled to Fast Fourier Transform Poisson Solver: Application to Electroconvective Flow.
    Guan Y; Novosselov I
    J Comput Phys; 2019 Nov; 397():. PubMed ID: 31456595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation.
    Ren F; Song B; Sukop MC; Hu H
    Phys Rev E; 2016 Aug; 94(2-1):023311. PubMed ID: 27627416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of MR flow imaging by the lattice Boltzmann method and Bloch equation.
    Jurczuk K; Kretowski M; Bellanger JJ; Eliat PA; Saint-Jalmes H; Bézy-Wendling J
    Magn Reson Imaging; 2013 Sep; 31(7):1163-73. PubMed ID: 23711475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast forward solver of fluorescence diffuse optical tomography based on the lattice Boltzmann method.
    Wenqing Zhang ; Zhuangzhi Yan ; Jiehui Jiang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4034-4037. PubMed ID: 29060782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion modeling in pore networks: A comparison of common pore-scale models and alternative approaches.
    Sadeghi MA; Agnaou M; Barralet J; Gostick J
    J Contam Hydrol; 2020 Jan; 228():103578. PubMed ID: 31767229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meshless lattice Boltzmann method for the simulation of fluid flows.
    Musavi SH; Ashrafizaadeh M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023310. PubMed ID: 25768638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient LBM visual simulation on face-centered cubic lattices.
    Petkov K; Qiu F; Fan Z; Kaufman AE; Mueller K
    IEEE Trans Vis Comput Graph; 2009; 15(5):802-14. PubMed ID: 19590106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems.
    Chen L; Kang Q; Robinson BA; He YL; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043306. PubMed ID: 23679547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-scale modeling of two-phase flow: A comparison of the generalized network model to direct numerical simulation.
    Giudici LM; Raeini AQ; Akai T; Blunt MJ; Bijeljic B
    Phys Rev E; 2023 Mar; 107(3-2):035107. PubMed ID: 37073001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.