BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37091418)

  • 1. Coupled Lattice Boltzmann Modeling Framework for Pore-Scale Fluid Flow and Reactive Transport.
    Liu S; Barati R; Zhang C; Kazemi M
    ACS Omega; 2023 Apr; 8(15):13649-13669. PubMed ID: 37091418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Parallel Coupled Lattice Boltzmann-Volume of Fluid Framework for Modeling Porous Media Evolution.
    Alihussein H; Geier M; Krafczyk M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of multiscale lattice Boltzmann discrete-element method for reactive particle fluid flows.
    Maier ML; Patel RA; Prasianakis NI; Churakov SV; Nirschl H; Krause MJ
    Phys Rev E; 2021 Mar; 103(3-1):033306. PubMed ID: 33862794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.
    Karani H; Huber C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023304. PubMed ID: 25768633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffuse-interface lattice Boltzmann modeling of charged particle transport in Poiseuille flow.
    Liu J; Chai Z; Shi B
    Phys Rev E; 2022 Jul; 106(1-2):015306. PubMed ID: 35974528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Relaxation Time Lattice Boltzmann Method Coupled to Fast Fourier Transform Poisson Solver: Application to Electroconvective Flow.
    Guan Y; Novosselov I
    J Comput Phys; 2019 Nov; 397():. PubMed ID: 31456595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation.
    Ren F; Song B; Sukop MC; Hu H
    Phys Rev E; 2016 Aug; 94(2-1):023311. PubMed ID: 27627416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling of MR flow imaging by the lattice Boltzmann method and Bloch equation.
    Jurczuk K; Kretowski M; Bellanger JJ; Eliat PA; Saint-Jalmes H; Bézy-Wendling J
    Magn Reson Imaging; 2013 Sep; 31(7):1163-73. PubMed ID: 23711475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast forward solver of fluorescence diffuse optical tomography based on the lattice Boltzmann method.
    Wenqing Zhang ; Zhuangzhi Yan ; Jiehui Jiang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4034-4037. PubMed ID: 29060782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion modeling in pore networks: A comparison of common pore-scale models and alternative approaches.
    Sadeghi MA; Agnaou M; Barralet J; Gostick J
    J Contam Hydrol; 2020 Jan; 228():103578. PubMed ID: 31767229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meshless lattice Boltzmann method for the simulation of fluid flows.
    Musavi SH; Ashrafizaadeh M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023310. PubMed ID: 25768638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient LBM visual simulation on face-centered cubic lattices.
    Petkov K; Qiu F; Fan Z; Kaufman AE; Mueller K
    IEEE Trans Vis Comput Graph; 2009; 15(5):802-14. PubMed ID: 19590106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems.
    Chen L; Kang Q; Robinson BA; He YL; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043306. PubMed ID: 23679547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-scale modeling of two-phase flow: A comparison of the generalized network model to direct numerical simulation.
    Giudici LM; Raeini AQ; Akai T; Blunt MJ; Bijeljic B
    Phys Rev E; 2023 Mar; 107(3-2):035107. PubMed ID: 37073001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.