These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37091595)
1. Dihydrophenazine-derived oligomers from industrial waste as sustainable superior cathode materials for rechargeable lithium-ion batteries. He Q; Lv S; Huang Y; Guo J; Peng X; Du Y; Yang H RSC Adv; 2023 Apr; 13(18):12464-12468. PubMed ID: 37091595 [TBL] [Abstract][Full Text] [Related]
2. A Carbonyl Compound-Based Flexible Cathode with Superior Rate Performance and Cyclic Stability for Flexible Lithium-Ion Batteries. Amin K; Meng Q; Ahmad A; Cheng M; Zhang M; Mao L; Lu K; Wei Z Adv Mater; 2018 Jan; 30(4):. PubMed ID: 29226388 [TBL] [Abstract][Full Text] [Related]
3. High-Energy and High-Power-Density Potassium Ion Batteries Using Dihydrophenazine-Based Polymer as Active Cathode Material. Obrezkov FA; Ramezankhani V; Zhidkov I; Traven VF; Kurmaev EZ; Stevenson KJ; Troshin PA J Phys Chem Lett; 2019 Sep; 10(18):5440-5445. PubMed ID: 31495174 [TBL] [Abstract][Full Text] [Related]
4. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries. Liu X; Jin Y; Wang H; Yang X; Zhang P; Wang K; Jiang J Adv Mater; 2022 Sep; 34(37):e2203605. PubMed ID: 35905464 [TBL] [Abstract][Full Text] [Related]
5. LiV Zhu L; Xie L; Cao X ACS Appl Mater Interfaces; 2018 Apr; 10(13):10909-10917. PubMed ID: 29516728 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries. Liang S; Chen T; Pan A; Liu D; Zhu Q; Cao G ACS Appl Mater Interfaces; 2013 Nov; 5(22):11913-7. PubMed ID: 24147642 [TBL] [Abstract][Full Text] [Related]
7. Carbon nitride grafted waste-derived carbon as sustainable materials for lithium-sulfur batteries. Jia Y; Ji L; Gao H; Liu Y; Yang D; Li T; Bai J; Hu Q; Wang M; Liu J Nanotechnology; 2021 May; 32(31):. PubMed ID: 33735853 [TBL] [Abstract][Full Text] [Related]
8. A Quinone-Based Cathode Material for High-Performance Organic Lithium and Sodium Batteries. Wilkinson D; Bhosale M; Amores M; Naresh G; Cussen SA; Cooke G ACS Appl Energy Mater; 2021 Nov; 4(11):12084-12090. PubMed ID: 34841204 [TBL] [Abstract][Full Text] [Related]
9. In Situ Electrochemical Synthesis of Novel Lithium-Rich Organic Cathodes for All-Organic Li-Ion Full Batteries. Hu Y; Tang W; Yu Q; Yang C; Fan C ACS Appl Mater Interfaces; 2019 Sep; 11(36):32987-32993. PubMed ID: 31429536 [TBL] [Abstract][Full Text] [Related]
10. Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassium-Ion Batteries. Zhang C; Xu Y; He K; Dong Y; Zhao H; Medenbach L; Wu Y; Balducci A; Hannappel T; Lei Y Small; 2020 Sep; 16(38):e2002953. PubMed ID: 32815290 [TBL] [Abstract][Full Text] [Related]
11. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Song Z; Qian Y; Zhang T; Otani M; Zhou H Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977 [TBL] [Abstract][Full Text] [Related]
13. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650 [TBL] [Abstract][Full Text] [Related]
14. Polynitrosoarene Radical as an Efficient Cathode Material for Lithium-Ion Batteries. Kang F; Lin Y; Zhang S; Tan Z; Wang X; Yang J; Peng YK; Zhang W; Lee CS; Huang W; Zhang Q ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36753515 [TBL] [Abstract][Full Text] [Related]
15. Electrospun Single Crystalline Fork-Like K Hao P; Zhu T; Su Q; Lin J; Cui R; Cao X; Wang Y; Pan A Front Chem; 2018; 6():195. PubMed ID: 29911101 [TBL] [Abstract][Full Text] [Related]
16. Transition-Metal Sulfides for High-Performance Lithium Sulfide Cathodes in All-Solid-State Lithium-Sulfur Batteries. Gamo H; Hikima K; Matsuda A ACS Omega; 2023 Dec; 8(48):45557-45565. PubMed ID: 38075765 [TBL] [Abstract][Full Text] [Related]
17. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
18. Rational selection of amorphous or crystalline V Liu S; Tong Z; Zhao J; Liu X; Wang J; Ma X; Chi C; Yang Y; Liu X; Li Y Phys Chem Chem Phys; 2016 Sep; 18(36):25645-25654. PubMed ID: 27711585 [TBL] [Abstract][Full Text] [Related]
19. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related]
20. π-Conjugated Hexaazatrinaphthylene-Based Azo Polymer Cathode Material Synthesized by a Reductive Homocoupling Reaction for Organic Lithium-Ion Batteries. Sun Z; Liu H; Shu M; Lin Z; Liu B; Li Y; Li J; Yu T; Yao H; Zhu S; Guan S ACS Appl Mater Interfaces; 2022 Aug; 14(32):36700-36710. PubMed ID: 35938596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]