BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37091947)

  • 21. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide.
    Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML
    Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental and chemical carcinogenesis.
    Wogan GN; Hecht SS; Felton JS; Conney AH; Loeb LA
    Semin Cancer Biol; 2004 Dec; 14(6):473-86. PubMed ID: 15489140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategy of the scientific committee on occupational exposure limits (SCOEL) in the derivation of occupational exposure limits for carcinogens and mutagens.
    Bolt HM; Huici-Montagud A
    Arch Toxicol; 2008 Jan; 82(1):61-4. PubMed ID: 18008062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human carcinogenic risk evaluation, part II: contributions of the EUROTOX specialty section for carcinogenesis.
    Bolt HM; Degen GH
    Toxicol Sci; 2004 Sep; 81(1):3-6. PubMed ID: 15159528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carcinogenicity studies of 1,4-dioxane administered in drinking-water to rats and mice for 2 years.
    Kano H; Umeda Y; Kasai T; Sasaki T; Matsumoto M; Yamazaki K; Nagano K; Arito H; Fukushima S
    Food Chem Toxicol; 2009 Nov; 47(11):2776-84. PubMed ID: 19703511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vinyl chloride-a classical industrial toxicant of new interest.
    Bolt HM
    Crit Rev Toxicol; 2005; 35(4):307-23. PubMed ID: 15989139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An evaluation of the carcinogenic potential of the herbicide alachlor to man.
    Heydens WF; Wilson AG; Kier LD; Lau H; Thake DC; Martens MA
    Hum Exp Toxicol; 1999 Jun; 18(6):363-91. PubMed ID: 10413243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan.
    Jackson AF; Williams A; Recio L; Waters MD; Lambert IB; Yauk CL
    Toxicol Appl Pharmacol; 2014 Jan; 274(1):63-77. PubMed ID: 24183702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The linearized multistage model and the future of quantitative risk assessment.
    Crump KS
    Hum Exp Toxicol; 1996 Oct; 15(10):787-98. PubMed ID: 8906427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carcinogenicity categorization of chemicals-new aspects to be considered in a European perspective.
    Bolt HM; Foth H; Hengstler JG; Degen GH
    Toxicol Lett; 2004 Jun; 151(1):29-41. PubMed ID: 15177638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flavonoids and alkenylbenzenes: mechanisms of mutagenic action and carcinogenic risk.
    Rietjens IM; Boersma MG; van der Woude H; Jeurissen SM; Schutte ME; Alink GM
    Mutat Res; 2005 Jul; 574(1-2):124-38. PubMed ID: 15914212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemically induced renal tubule tumors in the laboratory rat and mouse: review of the NCI/NTP database and categorization of renal carcinogens based on mechanistic information.
    Lock EA; Hard GC
    Crit Rev Toxicol; 2004; 34(3):211-99. PubMed ID: 15239388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of in vivo genotoxic and carcinogenic potency to augment mode of action analysis: Case study with hexavalent chromium.
    Thompson CM; Bichteler A; Rager JE; Suh M; Proctor DM; Haws LC; Harris MA
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Apr; 800-801():28-34. PubMed ID: 27085472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An updated evaluation of the carcinogenic potential of 1,4-dioxane.
    Stickney JA; Sager SL; Clarkson JR; Smith LA; Locey BJ; Bock MJ; Hartung R; Olp SF
    Regul Toxicol Pharmacol; 2003 Oct; 38(2):183-95. PubMed ID: 14550759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mode-of-action framework for evaluating the relevance of rodent forestomach tumors in cancer risk assessment.
    Proctor DM; Gatto NM; Hong SJ; Allamneni KP
    Toxicol Sci; 2007 Aug; 98(2):313-26. PubMed ID: 17426108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment.
    Kitchin KT; Conolly R
    Chem Res Toxicol; 2010 Feb; 23(2):327-35. PubMed ID: 20035570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.