These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 37092019)

  • 1. Gait Training with Robotic Exoskeleton Assisted Rehabilitation System in Patients with Incomplete Traumatic and Non-Traumatic Spinal Cord Injury: A Pilot Study and Review of Literature.
    Gupta A; Prakash NB; Honavar PR
    Ann Indian Acad Neurol; 2023 Jan; 26(Suppl 1):S26-S31. PubMed ID: 37092019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial.
    Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A
    Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.
    Mazzoleni S; Battini E; Rustici A; Stampacchia G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study.
    Chang SH; Afzal T; ; Berliner J; Francisco GE
    Pilot Feasibility Stud; 2018; 4():62. PubMed ID: 29556414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: results from a randomized controlled trial.
    Gil-Agudo Á; Megía-García Á; Pons JL; Sinovas-Alonso I; Comino-Suárez N; Lozano-Berrio V; Del-Ama AJ
    J Neuroeng Rehabil; 2023 Mar; 20(1):36. PubMed ID: 36964574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 9. Are the 10 meter and 6 minute walk tests redundant in patients with spinal cord injury?
    Forrest GF; Hutchinson K; Lorenz DJ; Buehner JJ; Vanhiel LR; Sisto SA; Basso DM
    PLoS One; 2014; 9(5):e94108. PubMed ID: 24788068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Safety and Feasibility of Exoskeletal-Assisted Walking in Acute Rehabilitation After Spinal Cord Injury.
    McIntosh K; Charbonneau R; Bensaada Y; Bhatiya U; Ho C
    Arch Phys Med Rehabil; 2020 Jan; 101(1):113-120. PubMed ID: 31568761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation.
    Calabrò RS; Billeri L; Ciappina F; Balletta T; Porcari B; Cannavò A; Pignolo L; Manuli A; Naro A
    Expert Rev Med Devices; 2022 Jan; 19(1):83-95. PubMed ID: 33616471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Robot therapy with the H2 exoskeleton for gait rehabilitation in patients with incomplete spinal cord injry. A clinical experience].
    Gil-Agudo A; Del Ama-Espinosa AJ; Lozano-Berrio V; Fernández-López A; Megía García-Carpintero A; Benito-Penalva J; Pons JL
    Rehabilitacion (Madr); 2020; 54(2):87-95. PubMed ID: 32370833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics.
    Bach Baunsgaard C; Vig Nissen U; Katrin Brust A; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Benito J; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F
    Spinal Cord; 2018 Feb; 56(2):106-116. PubMed ID: 29105657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Gait Speed After Robot-Assisted Gait Training in Patients With Motor Incomplete Spinal Cord Injury: A Preliminary Study.
    Hwang S; Kim HR; Han ZA; Lee BS; Kim S; Shin H; Moon JG; Yang SP; Lim MH; Cho DY; Kim H; Lee HJ
    Ann Rehabil Med; 2017 Feb; 41(1):34-41. PubMed ID: 28289633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: a clinical study.
    Okawara H; Sawada T; Matsubayashi K; Sugai K; Tsuji O; Nagoshi N; Matsumoto M; Nakamura M
    Spinal Cord; 2020 May; 58(5):520-527. PubMed ID: 31831847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of overground gait training with 'Mobility Assisted Robotic System-MARS' on gait parameters in patients with stroke: a pre-post study.
    Gupta A; Prakash NB; Sannyasi G; Mohamad F; Honavar P; Jotheeswaran S; Khanna M; Ramakrishnan S
    BMC Neurol; 2023 Aug; 23(1):296. PubMed ID: 37558991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of end-effector robot-assisted gait training on gait ability, muscle strength, and balance in patients with spinal cord injury.
    Shin JC; Jeon HR; Kim D; Min WK; Lee JS; Cho SI; Oh DS; Yoo J
    NeuroRehabilitation; 2023; 53(3):335-346. PubMed ID: 37638457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients.
    Jansen O; Grasmuecke D; Meindl RC; Tegenthoff M; Schwenkreis P; Sczesny-Kaiser M; Wessling M; Schildhauer TA; Fisahn C; Aach M
    World Neurosurg; 2018 Feb; 110():e73-e78. PubMed ID: 29081392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.