BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37092035)

  • 1. SAINT-Angle: self-attention augmented inception-inside-inception network and transfer learning improve protein backbone torsion angle prediction.
    Hasan AKMM; Ahmed AY; Mahbub S; Rahman MS; Bayzid MS
    Bioinform Adv; 2023; 3(1):vbad042. PubMed ID: 37092035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAINT: self-attention augmented inception-inside-inception network improves protein secondary structure prediction.
    Uddin MR; Mahbub S; Rahman MS; Bayzid MS
    Bioinformatics; 2020 Nov; 36(17):4599-4608. PubMed ID: 32437517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OPUS-TASS: a protein backbone torsion angles and secondary structure predictor based on ensemble neural networks.
    Xu G; Wang Q; Ma J
    Bioinformatics; 2020 Dec; 36(20):5021-5026. PubMed ID: 32678893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning methods for protein torsion angle prediction.
    Li H; Hou J; Adhikari B; Lyu Q; Cheng J
    BMC Bioinformatics; 2017 Sep; 18(1):417. PubMed ID: 28923002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IGPRED-MultiTask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility.
    Gormez Y; Aydin Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1104-1113. PubMed ID: 35849663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences.
    Song J; Tan H; Wang M; Webb GI; Akutsu T
    PLoS One; 2012; 7(2):e30361. PubMed ID: 22319565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Protein Backbone Torsion Angles Using Deep Residual Inception Neural Networks.
    Fang C; Shang Y; Xu D
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Mar; ():. PubMed ID: 29994074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TAFPred: Torsion Angle Fluctuations Prediction from Protein Sequences.
    Kabir MWU; Alawad DM; Mishra A; Hoque MT
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MUFold-SSW: a new web server for predicting protein secondary structures, torsion angles and turns.
    Fang C; Li Z; Xu D; Shang Y
    Bioinformatics; 2020 Feb; 36(4):1293-1295. PubMed ID: 31532508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPOT-1D-Single: improving the single-sequence-based prediction of protein secondary structure, backbone angles, solvent accessibility and half-sphere exposures using a large training set and ensembled deep learning.
    Singh J; Litfin T; Paliwal K; Singh J; Hanumanthappa AK; Zhou Y
    Bioinformatics; 2021 Oct; 37(20):3464-3472. PubMed ID: 33983382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction.
    Zhang T; Faraggi E; Zhou Y
    Proteins; 2010 Dec; 78(16):3353-62. PubMed ID: 20818661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EGRET: edge aggregated graph attention networks and transfer learning improve protein-protein interaction site prediction.
    Mahbub S; Bayzid MS
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35106547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Naive Prediction of Protein Backbone Phi and Psi Dihedral Angles Using Deep Learning.
    Broz M; Jukič M; Bren U
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2019 Jul; 35(14):2403-2410. PubMed ID: 30535134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
    Heffernan R; Paliwal K; Lyons J; Dehzangi A; Sharma A; Wang J; Sattar A; Yang Y; Zhou Y
    Sci Rep; 2015 Jun; 5():11476. PubMed ID: 26098304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grid-based prediction of torsion angle probabilities of protein backbone and its application to discrimination of protein intrinsic disorder regions and selection of model structures.
    Gao J; Yang Y; Zhou Y
    BMC Bioinformatics; 2018 Feb; 19(1):29. PubMed ID: 29390958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein backbone angle prediction with machine learning approaches.
    Kuang R; Leslie CS; Yang AS
    Bioinformatics; 2004 Jul; 20(10):1612-21. PubMed ID: 14988121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of protein torsion angles using chemical shifts and sequence homology.
    Neal S; Berjanskii M; Zhang H; Wishart DS
    Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMIGOS III: pseudo-torsion angle visualization and motif-based structure comparison of nucleic acids.
    Shine M; Zhang C; Pyle AM
    Bioinformatics; 2022 May; 38(10):2937-2939. PubMed ID: 35561202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate prediction of protein torsion angles using evolutionary signatures and recurrent neural network.
    Xu YC; ShangGuan TJ; Ding XM; Cheung NJ
    Sci Rep; 2021 Oct; 11(1):21033. PubMed ID: 34702851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.