These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37092281)

  • 41. Infrared Stimulated Luminescence of Ce
    Bilski P; Mrozik A; Gieszczyk W; Nizhankovskiy S; Zorenko Y
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499784
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Residual Optically Stimulated Luminescent (OSL) Signals for Al2O3: C and a Readout System With Reproducible Partial Signal Clearance.
    Abraham SA; Kearfott KJ
    Health Phys; 2018 Nov; 115(5):561-568. PubMed ID: 29912009
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optically stimulated luminescence dosimetry performance of natural Brazilian topaz exposed to beta radiation.
    Bernal R; Souza DN; Valerio ME; Cruz-Vázquez C; Barboza-Flores M
    Radiat Prot Dosimetry; 2006; 119(1-4):161-3. PubMed ID: 16735557
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermoluminescence and optically stimulated luminescence properties of natural barytes.
    Kitis G; Kiyak NG; Polymeris GS
    Appl Radiat Isot; 2010 Dec; 68(12):2409-15. PubMed ID: 20620071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uniformity of Thermoluminescence and Optically Stimulated Luminescence Signals Over the Length of Doped LiMgPO
    Marczewska B; Gieszczyk W; Kłosowski M; Książek M; Bilski P; Boroń Ł
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396840
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NaCl pellets for prospective dosimetry using optically stimulated luminescence: Signal integrity and long-term versus short-term exposure.
    Waldner L; Rääf C; Bernhardsson C
    Radiat Environ Biophys; 2020 Nov; 59(4):693-702. PubMed ID: 32968842
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The response of thermally and optically stimulated luminescence from Al2O3:C to high-energy heavy charged particles.
    Gaza R; Yukihara EG; McKeever SW
    Radiat Meas; 2004; 38(4-6):417-20. PubMed ID: 15856574
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of Li
    Shivaramu NJ; Coetsee E; Swart HC
    Luminescence; 2020 Aug; 35(5):636-650. PubMed ID: 31944540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optically stimulated luminescence in state-of-the-art LYSO:Ce scintillators enables high spatial resolution 3D dose imaging.
    Jensen ML; Nyemann JS; Muren LP; Julsgaard B; Balling P; Turtos RM
    Sci Rep; 2022 May; 12(1):8301. PubMed ID: 35585168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermoluminescence and optically stimulated luminescence properties of beta-irradiated TiO2:Yb nanoparticles.
    Pal M; Pal U; Chernov V; Meléndrez R; Barboza-Flores M
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1851-7. PubMed ID: 19435049
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of sintering temperature on sensitivity of MgB
    González PR; Ávila O; Mendoza-Anaya D; Escobar-Alarcón L
    Appl Radiat Isot; 2021 Jan; 167():109459. PubMed ID: 33068985
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optically stimulated luminescence properties of commercially available KCL dietary supplements as retrospective dosimeters.
    Szufa KM; Majgier R
    Luminescence; 2022 Oct; 37(10):1760-1768. PubMed ID: 35916107
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing the Cr
    Esteves DM; Rodrigues AL; Alves LC; Alves E; Dias MI; Jia Z; Mu W; Lorenz K; Peres M
    Sci Rep; 2023 Mar; 13(1):4882. PubMed ID: 36966173
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and luminescence characterization of Eu
    Parauha YR; Dhoble SJ
    Luminescence; 2021 Dec; 36(8):1837-1846. PubMed ID: 32609916
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct evidence for the participation of band-tails and excited-state tunnelling in the luminescence of irradiated feldspars.
    Poolton NR; Kars RH; Wallinga J; Bos AJ
    J Phys Condens Matter; 2009 Dec; 21(48):485505. PubMed ID: 21832524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calibration and time fading characterization of a new optically stimulated luminescence film dosimeter.
    Caprioli M; Delombaerde L; De Saint-Hubert M; de Freitas Nascimento L; De Roover R; Himschoot K; van der Heyden B; Vandenbroucke D; Leblans P; Crijns W
    Med Phys; 2023 Feb; 50(2):1185-1193. PubMed ID: 36353946
    [TBL] [Abstract][Full Text] [Related]  

  • 57. OPTICALLY STIMULATED LUMINESCENCE OF LiF:Mg,Cu,P POWDER-INFLUENCE OF THERMAL TREATMENT.
    Sądel M; Bilski P; Kłosowski M
    Radiat Prot Dosimetry; 2019 Dec; 186(4):488-495. PubMed ID: 31330019
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optical and dosimetric properties of zircon.
    Kristianpoller N; Weiss D; Chen R
    Radiat Prot Dosimetry; 2006; 119(1-4):267-70. PubMed ID: 16702245
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermoluminescence dosimetry properties and kinetic parameters of lithium potassium borate glass co-doped with titanium and magnesium oxides.
    Hashim S; Alajerami YS; Ramli AT; Ghoshal SK; Saleh MA; Abdul Kadir AB; Saripan MI; Alzimami K; Bradley DA; Mhareb MH
    Appl Radiat Isot; 2014 Sep; 91():126-30. PubMed ID: 24929526
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optically stimulated luminescence in doped NaF.
    Gaikwad SU; Patil RR; Kulkarni MS; Bhatt BC; Moharil SV
    Appl Radiat Isot; 2016 May; 111():75-9. PubMed ID: 26926379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.