These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37092607)

  • 1. Enrichment and detection of VEGF
    He X; Xu J; Wang X; Ge C; Li S; Wang L; Xu Y
    Lab Chip; 2023 May; 23(10):2469-2476. PubMed ID: 37092607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of VEGF
    He X; Wang X; Ge C; Li S; Wang L; Xu Y
    ACS Sens; 2022 Apr; 7(4):1019-1026. PubMed ID: 35362948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of prostate specific antigen in whole blood by microfluidic chip integrated with dielectrophoretic separation and electrochemical sensing.
    Wang X; He X; He Z; Hou L; Ge C; Wang L; Li S; Xu Y
    Biosens Bioelectron; 2022 May; 204():114057. PubMed ID: 35168025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous quantitative detection of multiple tumor markers in microfluidic nanoliter-volume droplets.
    Zhang Y; Ye W; Yang C; Xu Z
    Talanta; 2019 Dec; 205():120096. PubMed ID: 31450456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated centrifugal microfluidic assay for whole blood fractionation and isolation of multiple cell populations using an aqueous two-phase system.
    Moon BU; Clime L; Brassard D; Boutin A; Daoud J; Morton K; Veres T
    Lab Chip; 2021 Oct; 21(21):4060-4070. PubMed ID: 34604897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive electrochemiluminescence biosensor for VEGF
    Cheng JL; Liu XP; Chen JS; Mao CJ; Jin BK
    Anal Bioanal Chem; 2020 May; 412(13):3073-3081. PubMed ID: 32162087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and preparation of centrifugal microfluidic chip integrated with SERS detection for rapid diagnostics.
    Su X; Xu Y; Zhao H; Li S; Chen L
    Talanta; 2019 Mar; 194():903-909. PubMed ID: 30609623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-the-Fly Phase Transition and Density Changes of Aqueous Two-Phase Systems on a Centrifugal Microfluidic Platform.
    Moon BU; Clime L; Hernandez-Castro JA; Brassard D; Nassif C; Malic L; Veres T
    Langmuir; 2022 Jan; 38(1):79-85. PubMed ID: 34928624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative determination of VEGF165 in cell culture medium by aptamer sandwich based chemiluminescence assay.
    Shan S; He Z; Mao S; Jie M; Yi L; Lin JM
    Talanta; 2017 Aug; 171():197-203. PubMed ID: 28551129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A portable oligonucleotide-based microfluidic device for the detection of VEGF
    Ko CN; Sun H; Wu KJ; Leung CH; Ren K; Ma DL
    Dalton Trans; 2019 Jul; 48(26):9824-9830. PubMed ID: 31147654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic chip using Au@SiO
    Gu Y; Li Z; Ge S; Mao Y; Gu Y; Cao X; Lu D
    Anal Bioanal Chem; 2022 Nov; 414(26):7659-7673. PubMed ID: 36050486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of VEGF
    Li J; Liu Y; Wang C; Jia Q; Zhang G; Huang X; Zhou N; Zhang Z
    Mikrochim Acta; 2021 May; 188(6):211. PubMed ID: 34050442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An aptamer-based four-color fluorometic method for simultaneous determination and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells.
    Xu J; Chen W; Shi M; Huang Y; Fang L; Zhao S; Yao L; Liang H
    Mikrochim Acta; 2019 Feb; 186(3):204. PubMed ID: 30796534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic colorimetric detection platform with sliding hybrid PMMA/paper microchip for human urine and blood sample analysis.
    Laurenciano CJD; Tseng CC; Chen SJ; Lu SY; Tayo LL; Fu LM
    Talanta; 2021 Aug; 231():122362. PubMed ID: 33965028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of extracellular vesicles from small volumes of plasma using a microfluidic aqueous two-phase system.
    Han BH; Kim S; Seo G; Heo Y; Chung S; Kang JY
    Lab Chip; 2020 Sep; 20(19):3552-3559. PubMed ID: 32808641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the fuzzy proportional integral differential (PID) temperature control algorithm in a liver function test system based on a centrifugal microfluidic device.
    Ren K; Xie Y; Wang C; Yan J; Shi Y; Guo J; Guo J
    Talanta; 2024 Feb; 268(Pt 1):125330. PubMed ID: 37879203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porphyrin-based covalent organic framework as bioplatfrom for detection of vascular endothelial growth factor 165 through fluorescence resonance energy transfer.
    Cui J; Kan L; Li Z; Yang L; Wang M; He L; Lou Y; Xue Y; Zhang Z
    Talanta; 2021 Jun; 228():122060. PubMed ID: 33773722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of laminar flow extraction and capillary electrophoretic separation in one microfluidic chip for detection of plant alkaloids in blood samples.
    Hu Y; Peng H; Yan Y; Guan S; Wang S; Li PCH; Sun Y
    Anal Chim Acta; 2017 Sep; 985():121-128. PubMed ID: 28864182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of capillary micellar liquid chromatography with on-chip microfluidic chemiluminescence detection for direct analysis of buspirone in human plasma.
    Al Lawati HA; Kadavilpparampu AM; Suliman FO
    Talanta; 2014 Sep; 127():230-8. PubMed ID: 24913881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.