These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37092935)

  • 1. Intra- and inter-speaker variation in eight Russian fricativesa).
    Ulrich N; Pellegrino F; Allassonnière-Tang M
    J Acoust Soc Am; 2023 Apr; 153(4):2285. PubMed ID: 37092935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the Russian voiceless non-palatalized fricatives /f/, /s/, and /ʃ/ from acoustic cues using machine learning.
    Ulrich N; Allassonnière-Tang M; Pellegrino F; Dediu D
    J Acoust Soc Am; 2021 Sep; 150(3):1806. PubMed ID: 34598630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do long-term acoustic-phonetic features and mel-frequency cepstral coefficients provide complementary speaker-specific information for forensic voice comparison?
    Chan RKW; Wang BX
    Forensic Sci Int; 2024 Oct; 363():112199. PubMed ID: 39182457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic and speaker variation in Dutch /n/ and /m/ as a function of phonetic context and syllabic position.
    Smorenburg L; Heeren W
    J Acoust Soc Am; 2021 Aug; 150(2):979. PubMed ID: 34470278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of acoustic parameters for consonant voicing classification in clean and telephone speech.
    Lee SM; Choi JY
    J Acoust Soc Am; 2012 Mar; 131(3):EL197-202. PubMed ID: 22423808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical method of estimating the time-varying degree of vowel nasalization from acoustic features.
    Carignan C
    J Acoust Soc Am; 2021 Feb; 149(2):911. PubMed ID: 33639809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning in automatic detection of dysphonia: Comparing acoustic features and developing a generalizable framework.
    Chen Z; Zhu P; Qiu W; Guo J; Li Y
    Int J Lang Commun Disord; 2023 Mar; 58(2):279-294. PubMed ID: 36117378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic-phonetic features for the automatic classification of fricatives.
    Ali AM; Van der Spiegel J; Mueller P
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):2217-35. PubMed ID: 11386573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.
    Darch J; Milner B; Vaseghi S
    J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction.
    Shao X; Milner B
    J Acoust Soc Am; 2005 Aug; 118(2):1134-43. PubMed ID: 16158667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective speech outcomes after surgical treatment for oral cancer: An acoustic analysis of a spontaneous speech corpus containing 32.850 tokens.
    Tienkamp TB; van Son RJJH; Halpern BM
    J Commun Disord; 2023; 101():106292. PubMed ID: 36521253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex-related acoustic changes in voiceless English fricatives.
    Fox RA; Nissen SL
    J Speech Lang Hear Res; 2005 Aug; 48(4):753-65. PubMed ID: 16378471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic characteristics of fricatives, amplitude of formants and clarity of speech produced without and with a medical mask.
    Nguyen DD; Chacon A; Payten C; Black R; Sheth M; McCabe P; Novakovic D; Madill C
    Int J Lang Commun Disord; 2022 Mar; 57(2):366-380. PubMed ID: 35166414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustics of Kalasha laterals.
    Kochetov A; Petersen JH; Arsenault P
    J Acoust Soc Am; 2020 Apr; 147(4):3012. PubMed ID: 32359329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustically distinct and perceptually ambiguous: ʔayʔaǰuθəm (Salish) fricatives.
    Mellesmoen G; Babel M
    J Acoust Soc Am; 2020 Apr; 147(4):2959. PubMed ID: 32359305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of stop place in consonant-vowel contexts using feature extrapolation of acoustic-phonetic features in telephone speech.
    Lee JW; Choi JY; Kang HG
    J Acoust Soc Am; 2012 Feb; 131(2):1536-46. PubMed ID: 22352523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic characteristics of English fricatives.
    Jongman A; Wayland R; Wong S
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1252-63. PubMed ID: 11008825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of word class on speaker-dependent information in the Standard Dutch vowel /aː/.
    Heeren WFL
    J Acoust Soc Am; 2020 Oct; 148(4):2028. PubMed ID: 33138546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra- and inter-speaker variations of formant pattern for lateral syllables in Standard Chinese.
    Zhang C; van de Weijer J; Cui J
    Forensic Sci Int; 2006 May; 158(2-3):117-24. PubMed ID: 16039081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonetic correlates of phonological vowel quantity in Yakut read and spontaneous speech.
    Vasilyeva L; Arnhold A; Järvikivi J
    J Acoust Soc Am; 2016 May; 139(5):2541. PubMed ID: 27250149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.