These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 37093016)
1. Engineered Sucrose Metabolism Improves the Smut Disease Suppression Potency of Pseudomonas sp. ST4. Lin NQ; Liang ZB; Wang HS; Wu XY; Zhang LH; Deng YZ Appl Environ Microbiol; 2023 May; 89(5):e0220822. PubMed ID: 37093016 [TBL] [Abstract][Full Text] [Related]
2. The mating-type locus b of the sugarcane smut Sporisorium scitamineum is essential for mating, filamentous growth and pathogenicity. Yan M; Zhu G; Lin S; Xian X; Chang C; Xi P; Shen W; Huang W; Cai E; Jiang Z; Deng YZ; Zhang LH Fungal Genet Biol; 2016 Jan; 86():1-8. PubMed ID: 26563415 [TBL] [Abstract][Full Text] [Related]
3. Aminotransferase SsAro8 Regulates Tryptophan Metabolism Essential for Filamentous Growth of Sugarcane Smut Fungus Cui G; Huang C; Bi X; Wang Y; Yin K; Zhu L; Jiang Z; Chen B; Deng YZ Microbiol Spectr; 2022 Aug; 10(4):e0057022. PubMed ID: 35862944 [TBL] [Abstract][Full Text] [Related]
4. Pseudomonas sp. ST4 produces variety of active compounds to interfere fungal sexual mating and hyphal growth. Liu S; He F; Lin N; Chen Y; Liang Z; Liao L; Lv M; Chen Y; Chen S; Zhou J; Zhang LH Microb Biotechnol; 2020 Jan; 13(1):107-117. PubMed ID: 29931737 [TBL] [Abstract][Full Text] [Related]
5. Biocontrol of Sugarcane Smut Disease by Interference of Fungal Sexual Mating and Hyphal Growth Using a Bacterial Isolate. Liu S; Lin N; Chen Y; Liang Z; Liao L; Lv M; Chen Y; Tang Y; He F; Chen S; Zhou J; Zhang L Front Microbiol; 2017; 8():778. PubMed ID: 28536557 [TBL] [Abstract][Full Text] [Related]
6. Protoplast-mediated transformation in Sporisorium scitamineum facilitates visualization of in planta developmental stages in sugarcane. Agisha VN; Ashwin NMR; Vinodhini RT; Nalayeni K; Ramesh Sundar A; Malathi P; Viswanathan R Mol Biol Rep; 2021 Dec; 48(12):7921-7932. PubMed ID: 34655406 [TBL] [Abstract][Full Text] [Related]
8. The AGC Kinase SsAgc1 Regulates Wang Y; Deng YZ; Cui G; Huang C; Zhang B; Chang C; Jiang Z; Zhang LH mSphere; 2019 May; 4(3):. PubMed ID: 31142621 [No Abstract] [Full Text] [Related]
9. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. Que Y; Xu L; Wu Q; Liu Y; Ling H; Liu Y; Zhang Y; Guo J; Su Y; Chen J; Wang S; Zhang C BMC Genomics; 2014 Nov; 15(1):996. PubMed ID: 25406499 [TBL] [Abstract][Full Text] [Related]
10. A Genetically Engineered Cui G; Bi X; Lu S; Jiang Z; Deng Y Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375066 [No Abstract] [Full Text] [Related]
11. Intracellular polyamines regulate redox homeostasis with cAMP-PKA signalling during sexual mating/filamentation and pathogenicity of Sporisorium scitamineum. Yin K; Cui G; Bi X; Liang M; Hu Z; Deng YZ Mol Plant Pathol; 2024 Jan; 25(1):e13393. PubMed ID: 37814404 [TBL] [Abstract][Full Text] [Related]
12. Kynurenine 3-Monooxygenase Gene Cai Y; Bai F; Chen J; Li W; Bao H; Zhang Y; Chen J; Shen W Phytopathology; 2023 Mar; 113(3):484-496. PubMed ID: 36173285 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional analysis identifies major pathways as response components to Sporisorium scitamineum stress in sugarcane. Huang N; Ling H; Su Y; Liu F; Xu L; Su W; Wu Q; Guo J; Gao S; Que Y Gene; 2018 Dec; 678():207-218. PubMed ID: 30099025 [TBL] [Abstract][Full Text] [Related]
14. A dynamic degradome landscape on miRNAs and their predicted targets in sugarcane caused by Sporisorium scitamineum stress. Su Y; Xiao X; Ling H; Huang N; Liu F; Su W; Zhang Y; Xu L; Muhammad K; Que Y BMC Genomics; 2019 Jan; 20(1):57. PubMed ID: 30658590 [TBL] [Abstract][Full Text] [Related]
15. cAMP/PKA signalling pathway regulates redox homeostasis essential for Sporisorium scitamineum mating/filamentation and virulence. Chang C; Cai E; Deng YZ; Mei D; Qiu S; Chen B; Zhang LH; Jiang Z Environ Microbiol; 2019 Mar; 21(3):959-971. PubMed ID: 30537399 [TBL] [Abstract][Full Text] [Related]
16. A sugarcane smut fungus effector simulates the host endogenous elicitor peptide to suppress plant immunity. Ling H; Fu X; Huang N; Zhong Z; Su W; Lin W; Cui H; Que Y New Phytol; 2022 Jan; 233(2):919-933. PubMed ID: 34716592 [TBL] [Abstract][Full Text] [Related]
17. Small RNA sequencing reveals a role for sugarcane miRNAs and their targets in response to Sporisorium scitamineum infection. Su Y; Zhang Y; Huang N; Liu F; Su W; Xu L; Ahmad W; Wu Q; Guo J; Que Y BMC Genomics; 2017 Apr; 18(1):325. PubMed ID: 28438123 [TBL] [Abstract][Full Text] [Related]
18. Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum. Schweizer G; Münch K; Mannhaupt G; Schirawski J; Kahmann R; Dutheil JY Genome Biol Evol; 2018 Feb; 10(2):629-645. PubMed ID: 29390140 [TBL] [Abstract][Full Text] [Related]
19. A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi. Dutheil JY; Mannhaupt G; Schweizer G; M K Sieber C; Münsterkötter M; Güldener U; Schirawski J; Kahmann R Genome Biol Evol; 2016 Feb; 8(3):681-704. PubMed ID: 26872771 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. Su Y; Xu L; Wang Z; Peng Q; Yang Y; Chen Y; Que Y BMC Genomics; 2016 Oct; 17(1):800. PubMed ID: 27733120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]