BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37093058)

  • 1. High-sensitivity silicon carbide divacancy-based temperature sensing.
    Luo QY; Zhao S; Hu QC; Quan WK; Zhu ZQ; Li JJ; Wang JF
    Nanoscale; 2023 May; 15(18):8432-8436. PubMed ID: 37093058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent Control and Magnetic Detection of Divacancy Spins in Silicon Carbide at High Pressures.
    Liu L; Wang JF; Liu XD; Xu HA; Cui JM; Li Q; Zhou JY; Lin WX; He ZX; Xu W; Wei Y; Liu ZH; Wang P; Hao ZH; Ding JF; Li HO; Liu W; Li H; You L; Xu JS; Gregoryanz E; Li CF; Guo GC
    Nano Lett; 2022 Dec; 22(24):9943-9950. PubMed ID: 36507869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-coupled silicon carbide divacancy magnetometer and thermometer.
    Quan WK; Liu L; Luo QY; Liu XD; Wang JF
    Opt Express; 2023 May; 31(10):15592-15598. PubMed ID: 37157657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic-field-dependent spin properties of divacancy defects in silicon carbide.
    Yan FF; Wang JF; He ZX; Li Q; Lin WX; Zhou JY; Xu JS; Li CF; Guo GC
    Nanoscale; 2023 Mar; 15(11):5300-5304. PubMed ID: 36810581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purcell Enhancement of a Single Silicon Carbide Color Center with Coherent Spin Control.
    Crook AL; Anderson CP; Miao KC; Bourassa A; Lee H; Bayliss SL; Bracher DO; Zhang X; Abe H; Ohshima T; Hu EL; Awschalom DD
    Nano Lett; 2020 May; 20(5):3427-3434. PubMed ID: 32208710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical thermometry based on level anticrossing in silicon carbide.
    Anisimov AN; Simin D; Soltamov VA; Lebedev SP; Baranov PG; Astakhov GV; Dyakonov V
    Sci Rep; 2016 Sep; 6():33301. PubMed ID: 27624819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum sensing of radio-frequency signal with NV centers in SiC.
    Jiang Z; Cai H; Cernansky R; Liu X; Gao W
    Sci Adv; 2023 May; 9(20):eadg2080. PubMed ID: 37196081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber-integrated silicon carbide silicon-vacancy-based magnetometer.
    Quan WK; Liu L; Luo QY; Liu XD; Wang JF
    Opt Lett; 2023 Mar; 48(6):1423-1426. PubMed ID: 36946943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressing phase decoherence of a single atom qubit with Carr-Purcell-Meiboom-Gill sequence.
    Yu S; Xu P; He X; Liu M; Wang J; Zhan M
    Opt Express; 2013 Dec; 21(26):32130-40. PubMed ID: 24514807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center.
    Bracher DO; Zhang X; Hu EL
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4060-4065. PubMed ID: 28373543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide.
    Kraus H; Soltamov VA; Fuchs F; Simin D; Sperlich A; Baranov PG; Astakhov GV; Dyakonov V
    Sci Rep; 2014 Jul; 4():5303. PubMed ID: 24993103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of silicon vacancy fluorescence intensity in silicon carbide using a dielectric cavity.
    Hu QC; Xu J; Luo QY; Hu HB; Guo PJ; Liu CY; Zhao S; Zhou Y; Wang JF
    Opt Lett; 2024 Jun; 49(11):2966-2969. PubMed ID: 38824304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum decoherence dynamics of divacancy spins in silicon carbide.
    Seo H; Falk AL; Klimov PV; Miao KC; Galli G; Awschalom DD
    Nat Commun; 2016 Sep; 7():12935. PubMed ID: 27679936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale depth control of implanted shallow silicon vacancies in silicon carbide.
    Li Q; Wang JF; Yan FF; Cheng ZD; Liu ZH; Zhou K; Guo LP; Zhou X; Zhang WP; Wang XX; Huang W; Xu JS; Li CF; Guo GC
    Nanoscale; 2019 Nov; 11(43):20554-20561. PubMed ID: 31432857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-Principles Investigation of Near-Surface Divacancies in Silicon Carbide.
    Zhu Y; Yu VW; Galli G
    Nano Lett; 2023 Dec; 23(24):11453-11460. PubMed ID: 38051297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization, modeling and design parameters identification of silicon carbide junction field effect transistor for temperature sensor applications.
    Ben Salah T; Khachroumi S; Morel H
    Sensors (Basel); 2010; 10(1):388-99. PubMed ID: 22315547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Paramagnetic Defects in the Synthesis of Silicon Carbide.
    Mukesh N; Márkus BG; Jegenyes N; Bortel G; Bezerra SM; Simon F; Beke D; Gali A
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature.
    Wang JF; Yan FF; Li Q; Liu ZH; Liu H; Guo GP; Guo LP; Zhou X; Cui JM; Wang J; Zhou ZQ; Xu XY; Xu JS; Li CF; Guo GC
    Phys Rev Lett; 2020 Jun; 124(22):223601. PubMed ID: 32567924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bright Silicon Carbide Single-Photon Emitting Diodes at Low Temperatures: Toward Quantum Photonics Applications.
    Khramtsov IA; Fedyanin DY
    Nanomaterials (Basel); 2021 Nov; 11(12):. PubMed ID: 34947525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical Charge State Manipulation of Single Silicon Vacancies in a Silicon Carbide Quantum Optoelectronic Device.
    Widmann M; Niethammer M; Fedyanin DY; Khramtsov IA; Rendler T; Booker ID; Ul Hassan J; Morioka N; Chen YC; Ivanov IG; Son NT; Ohshima T; Bockstedte M; Gali A; Bonato C; Lee SY; Wrachtrup J
    Nano Lett; 2019 Oct; 19(10):7173-7180. PubMed ID: 31532999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.