These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37093065)

  • 1. Adaptation of Prokaryotic Toxins for Negative Selection and Cloning-Independent Markerless Mutagenesis in Streptococcus Species.
    Li L; Krieger M; Qin H; Zou Z; Kreth J; Merritt J
    mSphere; 2023 Jun; 8(3):e0068222. PubMed ID: 37093065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombineering in
    Zhang S; Zou Z; Kreth J; Merritt J
    Front Cell Infect Microbiol; 2017; 7():202. PubMed ID: 28589101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning-independent and counterselectable markerless mutagenesis system in Streptococcus mutans.
    Xie Z; Okinaga T; Qi F; Zhang Z; Merritt J
    Appl Environ Microbiol; 2011 Nov; 77(22):8025-33. PubMed ID: 21948849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a tunable wide-range gene induction system useful for the study of streptococcal toxin-antitoxin systems.
    Xie Z; Qi F; Merritt J
    Appl Environ Microbiol; 2013 Oct; 79(20):6375-84. PubMed ID: 23934493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a counterselection-based in-frame deletion system for genetic studies of Streptococcus mutans.
    Merritt J; Tsang P; Zheng L; Shi W; Qi F
    Oral Microbiol Immunol; 2007 Apr; 22(2):95-102. PubMed ID: 17311632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of a Toxin-Antitoxin Gene Cassette under High Hydrostatic Pressure Enables Markerless Gene Disruption in the Hyperthermophilic Archaeon
    Song Q; Li Z; Chen R; Ma X; Xiao X; Xu J
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30504216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HicA Toxin-Based Counterselection Marker for Allelic Exchange Mutations in Fusobacterium nucleatum.
    Gc B; Zhou P; Wu C
    Appl Environ Microbiol; 2023 Apr; 89(4):e0009123. PubMed ID: 37039662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Markerless Genome Editing in Competent Streptococci.
    Junges R; Khan R; Tovpeko Y; Åmdal HA; Petersen FC; Morrison DA
    Methods Mol Biol; 2017; 1537():233-247. PubMed ID: 27924598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Markerless Genome Editing in Competent Streptococci.
    Junges R; Khan R; Tovpeko Y; Åmdal HA; Petersen FC; Morrison DA
    Methods Mol Biol; 2023; 2588():201-216. PubMed ID: 36418690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning-independent plasmid construction for genetic studies in streptococci.
    Xie Z; Qi F; Merritt J
    J Microbiol Methods; 2013 Aug; 94(2):77-82. PubMed ID: 23673081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient markerless genetic manipulation of
    Jiang J; Zhao Y; Chen A; Sun J; Zhou M; Hu J; Cao X; Dai N; Liang Z; Feng S
    Appl Environ Microbiol; 2024 Apr; 90(4):e0204323. PubMed ID: 38547470
    [No Abstract]   [Full Text] [Related]  

  • 12. Highly Effective Markerless Genetic Manipulation of
    Gao G; Wei D; Li G; Chen P; Wu L; Liu S; Zhang Y
    Front Microbiol; 2022; 13():947821. PubMed ID: 35910605
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of a Streptococcus mutans intergenic region containing a small toxic peptide and its cis-encoded antisense small RNA antitoxin.
    Koyanagi S; Lévesque CM
    PLoS One; 2013; 8(1):e54291. PubMed ID: 23326602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Markerless gene editing in
    Jones RA; Yee WX; Mader K; Tang CM; Cehovin A
    Microbiology (Reading); 2022 Jun; 168(6):. PubMed ID: 35763318
    [No Abstract]   [Full Text] [Related]  

  • 15. Cloning-independent markerless gene editing in Streptococcus sanguinis: novel insights in type IV pilus biology.
    Gurung I; Berry JL; Hall AMJ; Pelicic V
    Nucleic Acids Res; 2017 Apr; 45(6):e40. PubMed ID: 27903891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a novel Escherichia coli recombineering selection/counterselection cassette.
    Zhang G; Zhang Q; Wang J; Zhang J; Shang G
    Biotechnol Lett; 2023 Feb; 45(2):191-197. PubMed ID: 36495358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Markerless Deletion Mutagenesis System in Nitrate-Reducing Bacterium Rhodanobacter denitrificans.
    Tao X; Zhou A; Kempher ML; Liu J; Peng M; Li Y; Michael JP; Chakraborty R; Deutschbauer AM; Arkin AP; Zhou J
    Appl Environ Microbiol; 2022 Jul; 88(14):e0040122. PubMed ID: 35737807
    [No Abstract]   [Full Text] [Related]  

  • 18. Transposon Mutagenesis in Streptococcus Species.
    Nilsson M; Givskov M; Tolker-Nielsen T
    Methods Mol Biol; 2019; 2016():39-49. PubMed ID: 31197707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile Vectors for Efficient Mutagenesis of Bradyrhizobium diazoefficiens and Other Alphaproteobacteria.
    Ledermann R; Strebel S; Kampik C; Fischer HM
    Appl Environ Microbiol; 2016 May; 82(9):2791-2799. PubMed ID: 26921431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust counterselection and advanced λRed recombineering enable markerless chromosomal integration of large heterologous constructs.
    Bubnov DM; Yuzbashev TV; Khozov AA; Melkina OE; Vybornaya TV; Stan GB; Sineoky SP
    Nucleic Acids Res; 2022 Aug; 50(15):8947-8960. PubMed ID: 35920321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.