These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 37093306)

  • 1. Acid-tolerant bacteria and prospects in industrial and environmental applications.
    Mallick S; Das S
    Appl Microbiol Biotechnol; 2023 Jun; 107(11):3355-3374. PubMed ID: 37093306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation.
    Liu Y; Tang H; Lin Z; Xu P
    Biotechnol Adv; 2015 Nov; 33(7):1484-92. PubMed ID: 26057689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids.
    Moreau PL
    J Bacteriol; 2007 Mar; 189(6):2249-61. PubMed ID: 17209032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and spectroscopic properties of Brucella microti glutamate decarboxylase, a key component of the glutamate-dependent acid resistance system.
    Grassini G; Pennacchietti E; Cappadocio F; Occhialini A; De Biase D
    FEBS Open Bio; 2015; 5():209-18. PubMed ID: 25853037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of vibrio cholerae genes required for acid tolerance by a member of the "ToxR-like" family of transcriptional regulators.
    Merrell DS; Camilli A
    J Bacteriol; 2000 Oct; 182(19):5342-50. PubMed ID: 10986235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies on the decameric S. typhimurium arginine decarboxylase (ADC): Pyridoxal 5'-phosphate binding induces conformational changes.
    Deka G; Bharath SR; Savithri HS; Murthy MRN
    Biochem Biophys Res Commun; 2017 Sep; 490(4):1362-1368. PubMed ID: 28694189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CadC-mediated activation of the cadBA promoter in Escherichia coli.
    Kuper C; Jung K
    J Mol Microbiol Biotechnol; 2005; 10(1):26-39. PubMed ID: 16491024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive expression of the sRNA GadY decreases acetate production and improves E. coli growth.
    Negrete A; Shiloach J
    Microb Cell Fact; 2015 Sep; 14():148. PubMed ID: 26383169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiolipin biosynthesis in Streptococcus mutans is regulated in response to external pH.
    MacGilvray ME; Lapek JD; Friedman AE; Quivey RG
    Microbiology (Reading); 2012 Aug; 158(Pt 8):2133-2143. PubMed ID: 22628481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of two component signaling response regulators in acid tolerance of Streptococcus mutans.
    Kawada-Matsuo M; Shibata Y; Yamashita Y
    Oral Microbiol Immunol; 2009 Apr; 24(2):173-6. PubMed ID: 19239646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.
    Hamilton IR; Svensäter G
    Oral Microbiol Immunol; 1998 Oct; 13(5):292-300. PubMed ID: 9807121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli O157 : H7 glutamate- and arginine-dependent acid-resistance systems protect against oxidative stress during extreme acid challenge.
    Bearson BL; Lee IS; Casey TA
    Microbiology (Reading); 2009 Mar; 155(Pt 3):805-812. PubMed ID: 19246751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular design of a signaling system influences noise in protein abundance under acid stress in different γ-Proteobacteria.
    Brameyer S; Hoyer E; Bibinger S; Burdack K; Lassak J; Jung K
    J Bacteriol; 2020 Jun; 202(16):. PubMed ID: 32482722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis.
    Ginesy M; Belotserkovsky J; Enman J; Isaksson L; Rova U
    Microb Cell Fact; 2015 Mar; 14():29. PubMed ID: 25890272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential.
    Richard H; Foster JW
    J Bacteriol; 2004 Sep; 186(18):6032-41. PubMed ID: 15342572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid decarboxylase-dependent acid tolerance, selected phenotypic, and virulence gene expression responses of Salmonella enterica serovar Heidelberg.
    Liu J; Zhai L; Lu W; Lu Z; Bie X
    Food Res Int; 2017 Feb; 92():33-39. PubMed ID: 28290295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.
    Kanjee U; Gutsche I; Ramachandran S; Houry WA
    Biochemistry; 2011 Nov; 50(43):9388-98. PubMed ID: 21957966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium.
    Alvarez-Ordóñez A; Fernández A; Bernardo A; López M
    Int J Food Microbiol; 2010 Jan; 136(3):278-82. PubMed ID: 19864032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans.
    Hanna MN; Ferguson RJ; Li YH; Cvitkovitch DG
    J Bacteriol; 2001 Oct; 183(20):5964-73. PubMed ID: 11566996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine decarboxylase of Vibrio parahaemolyticus: kinetics of transcription and role in acid resistance.
    Tanaka Y; Kimura B; Takahashi H; Watanabe T; Obata H; Kai A; Morozumi S; Fujii T
    J Appl Microbiol; 2008 May; 104(5):1283-93. PubMed ID: 18031521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.