BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37093393)

  • 1. Reactive transport model of uranium by CO
    Zhang H; Zhang T; He Y
    Environ Sci Pollut Res Int; 2023 May; 30(24):65976-65989. PubMed ID: 37093393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reactive transport model designed to predict the environmental footprint of an 'in-situ recovery' uranium exploitation.
    Escario S; Seigneur N; Collet A; Regnault O; de Boissezon H; Lagneau V; Descostes M
    J Contam Hydrol; 2023 Mar; 254():104106. PubMed ID: 36634485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.
    Jing C; Landsberger S; Li YL
    J Environ Radioact; 2017 Sep; 175-176():1-6. PubMed ID: 28407570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.
    Saunders JA; Pivetz BE; Voorhies N; Wilkin RT
    J Environ Manage; 2016 Dec; 183():67-83. PubMed ID: 27576149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of core-shell composite materials capable of slowly releasing phosphate and their remediation performance of uranium-contaminated groundwater.
    Sheng L; Zhang H; Ma J; Ding D
    Chemosphere; 2023 Dec; 344():140160. PubMed ID: 37716562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine.
    Borch T; Roche N; Johnson TE
    J Environ Monit; 2012 Jul; 14(7):1814-23. PubMed ID: 22706154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects and driving mechanisms of bioremediation on groundwater after the neutral in situ leaching of uranium.
    Lian G; An Y; Sun J; Yang B; Shen Z
    Sci Total Environ; 2024 Jul; ():174406. PubMed ID: 38964395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The permeability evolution mechanism of ore-bearing strata during acid in-situ leaching of uranium: A case study of Bayanwula uranium mine in Inner Mongolia of China.
    He T; Liu J; Zhao B; Gong H; Feng Z; Liu S
    J Contam Hydrol; 2024 Jun; 265():104390. PubMed ID: 38959822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (234)U/(238)U signatures associated with uranium ore bodies: part 2 Manyingee.
    Lowson RT; McIntyre MG
    J Environ Radioact; 2013 Apr; 118():157-62. PubMed ID: 23182403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel solar-powered electrochemical mineralization system for persistent remediation of uranium-contaminated groundwater.
    Zhang Y; Li M; Hua Y; Wu X; Zhang X; Fang Q; Cai T
    J Environ Radioact; 2022 Sep; 250():106909. PubMed ID: 35597073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling evaluation of the impact of residual source material on remedial time frame at a former uranium mill site.
    Kent RD; Johnson RH; Laase AD; Nyman JL
    J Contam Hydrol; 2024 Feb; 261():104298. PubMed ID: 38242064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical review of uranium contamination in groundwater: Treatment and sludge disposal.
    Gandhi TP; Sampath PV; Maliyekkal SM
    Sci Total Environ; 2022 Jun; 825():153947. PubMed ID: 35189244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling flow and electric fields to simulate migration and remediation of uranium in groundwater remediated by electroosmosis and a permeable reactive bio-barrier.
    Zheng F; Zhai Y; Yue W; Teng Y
    J Environ Manage; 2023 Nov; 346():118947. PubMed ID: 37699289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling uranium and
    de Boissezon H; Levy L; Jakymiw C; Distinguin M; Guerin F; Descostes M
    J Contam Hydrol; 2020 Nov; 235():103711. PubMed ID: 32949982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating mobilization mechanisms of uranium during recharge of river water to contaminated groundwater.
    Paradis CJ; Hoss KN; Meurer CE; Hatami JL; Dangelmayr MA; Tigar AD; Johnson RH
    J Contam Hydrol; 2022 Dec; 251():104076. PubMed ID: 36148719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uranium Natural Attenuation Downgradient of an in Situ Recovery Mine Inferred from a Cross-Hole Field Test.
    Reimus PW; Dangelmayr MA; Clay JT; Chamberlain KR
    Environ Sci Technol; 2019 Jul; 53(13):7483-7493. PubMed ID: 31132251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.
    Yabusaki SB; Fang Y; Williams KH; Murray CJ; Ward AL; Dayvault RD; Waichler SR; Newcomer DR; Spane FA; Long PE
    J Contam Hydrol; 2011 Nov; 126(3-4):271-90. PubMed ID: 22115092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotopic Evidence for Reductive Immobilization of Uranium Across a Roll-Front Mineral Deposit.
    Brown ST; Basu A; Christensen JN; Reimus P; Heikoop J; Simmons A; Woldegabriel G; Maher K; Weaver K; Clay J; DePaolo DJ
    Environ Sci Technol; 2016 Jun; 50(12):6189-98. PubMed ID: 27203292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater chemistry of the Okélobondo uraninite deposit area (Oklo, Gabon): two-dimensional reactive transport modelling.
    Salas J; Ayora C
    J Contam Hydrol; 2004 Mar; 69(1-2):115-37. PubMed ID: 14972440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.