These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37093486)

  • 21. Controlled generation of droplets using an electric field in a flow-focusing paper-based device.
    Jiang T; Wu Y
    Electrophoresis; 2022 Feb; 43(4):601-608. PubMed ID: 34747509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleation rate measurement of colloidal crystallization using microfluidic emulsion droplets.
    Gong T; Shen J; Hu Z; Marquez M; Cheng Z
    Langmuir; 2007 Mar; 23(6):2919-23. PubMed ID: 17305378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled droplet microfluidic systems for multistep chemical and biological assays.
    Kaminski TS; Garstecki P
    Chem Soc Rev; 2017 Oct; 46(20):6210-6226. PubMed ID: 28858351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microfluidic device based on droplet storage for screening solubility diagrams.
    Laval P; Lisai N; Salmon JB; Joanicot M
    Lab Chip; 2007 Jul; 7(7):829-34. PubMed ID: 17594000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Throughput Steady-State Enzyme Kinetics Measured in a Parallel Droplet Generation and Absorbance Detection Platform.
    Neun S; van Vliet L; Hollfelder F; Gielen F
    Anal Chem; 2022 Dec; 94(48):16701-16710. PubMed ID: 36417687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroporation of cells in microfluidic droplets.
    Zhan Y; Wang J; Bao N; Lu C
    Anal Chem; 2009 Mar; 81(5):2027-31. PubMed ID: 19199389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS).
    Gerdts CJ; Elliott M; Lovell S; Mixon MB; Napuli AJ; Staker BL; Nollert P; Stewart L
    Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1116-22. PubMed ID: 19020349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using microfluidics to observe the effect of mixing on nucleation of protein crystals.
    Chen DL; Gerdts CJ; Ismagilov RF
    J Am Chem Soc; 2005 Jul; 127(27):9672-3. PubMed ID: 15998056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile and scalable tubing-free sample loading for droplet microfluidics.
    Shao F; Hsieh K; Zhang P; Kaushik AM; Wang TH
    Sci Rep; 2022 Aug; 12(1):13340. PubMed ID: 35922529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "V-junction": a novel structure for high-speed generation of bespoke droplet flows.
    Ding Y; Casadevall i Solvas X; deMello A
    Analyst; 2015 Jan; 140(2):414-21. PubMed ID: 25379571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation.
    Ji H; Lee J; Park J; Kim J; Kim HS; Cho Y
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.
    Cole RH; Tang SY; Siltanen CA; Shahi P; Zhang JQ; Poust S; Gartner ZJ; Abate AR
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8728-8733. PubMed ID: 28760972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput microfluidic droplets in biomolecular analytical system: A review.
    Zhang L; Parvin R; Chen M; Hu D; Fan Q; Ye F
    Biosens Bioelectron; 2023 May; 228():115213. PubMed ID: 36906989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A journey of trains of droplets in droplet-based microfluidic devices.
    Lee H; Xu L; Oh KW
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():778-81. PubMed ID: 25570074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic Approaches for Protein Crystal Structure Analysis.
    Maeki M; Yamaguchi H; Tokeshi M; Miyazaki M
    Anal Sci; 2016; 32(1):3-9. PubMed ID: 26753699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-throughput system combining microfluidic hydrogel droplets with deep learning for screening the antisolvent-crystallization conditions of active pharmaceutical ingredients.
    Su Z; He J; Zhou P; Huang L; Zhou J
    Lab Chip; 2020 Jun; 20(11):1907-1916. PubMed ID: 32420560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallelization of Microfluidic Droplet Junctions for Ultraviscous Fluids.
    Kim HH; Cho Y; Baek D; Rho KH; Park SH; Lee S
    Small; 2022 Dec; 18(48):e2205001. PubMed ID: 36310131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.