These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37093659)

  • 1. Many-Body Effects in Aqueous Systems: Synergies Between Interaction Analysis Techniques and Force Field Development.
    Heindel JP; Herman KM; Xantheas SS
    Annu Rev Phys Chem; 2023 Apr; 74():337-360. PubMed ID: 37093659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing
    Herman KM; Xantheas SS
    Phys Chem Chem Phys; 2023 Mar; 25(10):7120-7143. PubMed ID: 36853239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations.
    Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP
    J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The many-body expansion combined with neural networks.
    Yao K; Herr JE; Parkhill J
    J Chem Phys; 2017 Jan; 146(1):014106. PubMed ID: 28063436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperativity and Frustration Effects (or Lack Thereof) in Polarizable and Non-polarizable Force Fields.
    Nochebuena J; Piquemal JP; Liu S; Cisneros GA
    J Chem Theory Comput; 2023 Nov; 19(21):7715-7730. PubMed ID: 37888874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory.
    Carter-Fenk K; Lao KU; Herbert JM
    Acc Chem Res; 2021 Oct; 54(19):3679-3690. PubMed ID: 34550669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable next-generation force fields from simple liquids to complex materials.
    Schmidt JR; Yu K; McDaniel JG
    Acc Chem Res; 2015 Mar; 48(3):548-56. PubMed ID: 25688596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Many-Body Neural Network-Based Force Field for Structure-Based Coarse-Graining of Water.
    Moradzadeh A; Aluru NR
    J Phys Chem A; 2022 Mar; 126(12):2031-2041. PubMed ID: 35316059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Many-Body Expansion for Aqueous Systems Revisited: I. Water-Water Interactions.
    Heindel JP; Xantheas SS
    J Chem Theory Comput; 2020 Nov; 16(11):6843-6855. PubMed ID: 33064486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next-Generation Force Fields from Symmetry-Adapted Perturbation Theory.
    McDaniel JG; Schmidt JR
    Annu Rev Phys Chem; 2016 May; 67():467-88. PubMed ID: 27070322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force Field for Water Based on Neural Network.
    Wang H; Yang W
    J Phys Chem Lett; 2018 Jun; 9(12):3232-3240. PubMed ID: 29775313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Reproduction of Quantum Mechanical Many-Body Interactions in Peptide Main-Chain Hydrogen-Bonding Oligomers by the Polarizable Gaussian Multipole Model.
    Zhao S; Wei H; Cieplak P; Duan Y; Luo R
    J Chem Theory Comput; 2022 Oct; 18(10):6172-6188. PubMed ID: 36094401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially Homogeneous QM/MM for Systems of Interacting Molecules with on-the-Fly ab Initio Force-Field Parametrization.
    Sebetci A; Beran GJ
    J Chem Theory Comput; 2010 Jan; 6(1):155-67. PubMed ID: 26614328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Many-Body Expansion for Aqueous Systems Revisited: II. Alkali Metal and Halide Ion-Water Interactions.
    Heindel JP; Xantheas SS
    J Chem Theory Comput; 2021 Apr; 17(4):2200-2216. PubMed ID: 33709708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing polarizable force fields to ab initio calculations reveals nonclassical effects in condensed phases.
    Chelli R; Schettino V; Procacci P
    J Chem Phys; 2005 Jun; 122(23):234107. PubMed ID: 16008430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physically motivated, robust, ab initio force fields for CO2 and N2.
    Yu K; McDaniel JG; Schmidt JR
    J Phys Chem B; 2011 Aug; 115(33):10054-63. PubMed ID: 21736354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach.
    Veccham SP; Lee J; Head-Gordon M
    J Chem Phys; 2019 Nov; 151(19):194101. PubMed ID: 31757163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation-π interactions: accurate intermolecular potential from symmetry-adapted perturbation theory.
    Ansorg K; Tafipolsky M; Engels B
    J Phys Chem B; 2013 Sep; 117(35):10093-102. PubMed ID: 23924321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From dimers to the solid-state: Distributed intermolecular force-fields for pyridine.
    Aina AA; Misquitta AJ; Price SL
    J Chem Phys; 2017 Oct; 147(16):161722. PubMed ID: 29096494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.