BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37094176)

  • 1. Targeting Riboswitches with Beta-Axial-Substituted Cobalamins.
    Lennon SR; Wierzba AJ; Siwik SH; Gryko D; Palmer AE; Batey RT
    ACS Chem Biol; 2023 May; 18(5):1136-1147. PubMed ID: 37094176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin.
    Polaski JT; Webster SM; Johnson JE; Batey RT
    J Biol Chem; 2017 Jul; 292(28):11650-11658. PubMed ID: 28483920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Gene Expression Through Effector-dependent Conformational Switching by Cobalamin Riboswitches.
    Lennon SR; Batey RT
    J Mol Biol; 2022 Sep; 434(18):167585. PubMed ID: 35427633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy.
    Kennedy KJ; Widner FJ; Sokolovskaya OM; Innocent LV; Procknow RR; Mok KC; Taga ME
    mBio; 2022 Oct; 13(5):e0112122. PubMed ID: 35993747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A functional genetic screen reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches required for ligand selectivity.
    Polaski JT; Kletzien OA; Drogalis LK; Batey RT
    Nucleic Acids Res; 2018 Sep; 46(17):9094-9105. PubMed ID: 29945209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs.
    Deigan KE; Ferré-D'Amaré AR
    Acc Chem Res; 2011 Dec; 44(12):1329-38. PubMed ID: 21615107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of an atypical cobalamin riboswitch reveals RNA structural adaptability as basis for promiscuous ligand binding.
    Chan CW; Mondragón A
    Nucleic Acids Res; 2020 Jul; 48(13):7569-7583. PubMed ID: 32544228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational Ensemble of
    Ma B; Bai G; Nussinov R; Ding J; Wang YX
    J Phys Chem B; 2021 Mar; 125(10):2589-2596. PubMed ID: 33683130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. B12 cofactors directly stabilize an mRNA regulatory switch.
    Johnson JE; Reyes FE; Polaski JT; Batey RT
    Nature; 2012 Dec; 492(7427):133-7. PubMed ID: 23064232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Protonated Cytidine Stabilizes the Ligand-Binding Pocket in the PreQ
    Rückriegel S; Hohmann KF; Fürtig B
    Chembiochem; 2023 Aug; 24(15):e202300228. PubMed ID: 37314020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-Molecule-Binding Riboswitches.
    Lotz TS; Suess B
    Microbiol Spectr; 2018 Aug; 6(4):. PubMed ID: 30084346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic dissection of regulation by a repressing and novel activating corrinoid riboswitch enables engineering of synthetic riboswitches.
    Procknow RR; Kennedy KJ; Kluba M; Rodriguez LJ; Taga ME
    mBio; 2023 Oct; 14(5):e0158823. PubMed ID: 37823641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribocentre-switch: a database of riboswitches.
    Bu F; Lin X; Liao W; Lu Z; He Y; Luo Y; Peng X; Li M; Huang Y; Chen X; Xiao B; Jiang J; Deng J; Huang J; Lin T; Miao Z; Huang L
    Nucleic Acids Res; 2024 Jan; 52(D1):D265-D272. PubMed ID: 37855663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes.
    Zhang M; Liu G; Zhang Y; Chen T; Feng S; Cai R; Lu C
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subsite Ligand Recognition and Cooperativity in the TPP Riboswitch: Implications for Fragment-Linking in RNA Ligand Discovery.
    Zeller MJ; Nuthanakanti A; Li K; Aubé J; Serganov A; Weeks KM
    ACS Chem Biol; 2022 Feb; 17(2):438-448. PubMed ID: 35060698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic ligands for PreQ
    Connelly CM; Numata T; Boer RE; Moon MH; Sinniah RS; Barchi JJ; Ferré-D'Amaré AR; Schneekloth JS
    Nat Commun; 2019 Apr; 10(1):1501. PubMed ID: 30940810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A variant of guanidine-IV riboswitches exhibits evidence of a distinct ligand specificity.
    Lenkeit F; Eckert I; Sinn M; Hauth F; Hartig JS; Weinberg Z
    RNA Biol; 2023 Jan; 20(1):10-19. PubMed ID: 36548032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch.
    Matyjasik MM; Hall SD; Batey RT
    Molecules; 2020 May; 25(10):. PubMed ID: 32414072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based insights into recognition and regulation of SAM-sensing riboswitches.
    Zheng L; Song Q; Xu X; Shen X; Li C; Li H; Chen H; Ren A
    Sci China Life Sci; 2023 Jan; 66(1):31-50. PubMed ID: 36459353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.