These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3709418)

  • 1. Photoenergetics of octopus rhodopsin. Convergent evolution of biological photon counters?
    Cooper A; Dixon SF; Tsuda M
    Eur Biophys J; 1986; 13(4):195-201. PubMed ID: 3709418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes.
    Cooper A; Converse CA
    Biochemistry; 1976 Jul; 15(14):2970-8. PubMed ID: 8077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics and volume changes of the intermediates in the photolysis of octopus rhodopsin at a physiological temperature.
    Nishioku Y; Nakagawa M; Tsuda M; Terazima M
    Biophys J; 2002 Aug; 83(2):1136-46. PubMed ID: 12124293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum efficiencies of the reversible photoreaction of octopus rhodopsin.
    Dixon SF; Cooper A
    Photochem Photobiol; 1987 Jul; 46(1):115-9. PubMed ID: 3615630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments.
    Koutalos Y; Ebrey TG; Gilson HR; Honig B
    Biophys J; 1990 Aug; 58(2):493-501. PubMed ID: 2207250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved.
    Bennett N; Michel-Villaz M; Kühn H
    Eur J Biochem; 1982 Sep; 127(1):97-103. PubMed ID: 6291939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts.
    Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M
    Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates.
    Bagley KA; Eisenstein L; Ebrey TG; Tsuda M
    Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals.
    Koutalos Y; Ebrey TG; Tsuda M; Odashima K; Lien T; Park MH; Shimizu N; Derguini F; Nakanishi K; Gilson HR
    Biochemistry; 1989 Mar; 28(6):2732-9. PubMed ID: 2525050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient spectra of intermediates in the photolytic sequence of octopus rhodopsin.
    Tsuda M
    Biochim Biophys Acta; 1979 Mar; 545(3):537-46. PubMed ID: 34434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel photointermediate of octopus rhodopsin activates its G-protein.
    Nakagawa M; Kikkawa S; Tominaga K; Tsugi N; Tsuda M
    FEBS Lett; 1998 Oct; 436(2):259-62. PubMed ID: 9781691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions.
    Parkes JH; Liebman PA
    Biochemistry; 1984 Oct; 23(21):5054-61. PubMed ID: 6498176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Bathorhodopsin, hypsorhodopsin and photorhodopsin.
    Yoshizawa T; Shichida Y; Matuoka S
    Vision Res; 1984; 24(11):1455-63. PubMed ID: 6398559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical study of the light-induced protonation changes associated with the metarhodopson II intermediate in rod-outer-segment membranes.
    Bennett N
    Eur J Biochem; 1980 Oct; 111(1):99-103. PubMed ID: 7439192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metarhodopsin I/metarhodopsin II transition triggers light-induced change in calcium binding at rod disk membranes.
    Kaupp UB; Schnetkamp PP; Junge W
    Nature; 1980 Aug; 286(5773):638-40. PubMed ID: 6772971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin photoenergetics: lumirhodopsin and the complete energy profile.
    Cooper A
    FEBS Lett; 1981 Jan; 123(2):324-6. PubMed ID: 7227523
    [No Abstract]   [Full Text] [Related]  

  • 18. A spectrally silent transformation in the photolysis of octopus rhodopsin: a protein conformational change without any accompanying change of the chromophore's absorption.
    Nishioku Y; Nakagawa M; Tsuda M; Terazima M
    Biophys J; 2001 Jun; 80(6):2922-7. PubMed ID: 11371464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical activity of octopus metarhodopsins.
    Tsuda M
    Biochim Biophys Acta; 1979 Jun; 578(2):372-80. PubMed ID: 39625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy storage in the primary photochemical events of rhodopsin and isorhodopsin.
    Schick GA; Cooper TM; Holloway RA; Murray LP; Birge RR
    Biochemistry; 1987 May; 26(9):2556-62. PubMed ID: 3607033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.