These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 3709420)

  • 1. The human erythrocyte membrane skeleton may be an ionic gel. II. Numerical analyses of cell shapes and shape transformations.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Eur Biophys J; 1986; 13(4):219-33. PubMed ID: 3709420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrin, human erythrocyte shapes, and mechanochemical properties.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Biophys J; 1986 Jan; 49(1):319-27. PubMed ID: 3955175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechanochemical properties.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Eur Biophys J; 1986; 13(4):203-18. PubMed ID: 3709419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid monolayer expansion by calcium-chlorotetracycline at the air/water interface and, as inferred from cell shape changes, in the human erythrocyte membrane.
    Riquelme G; Jaimovich E; Lingsch C; Behn C
    Biochim Biophys Acta; 1982 Jul; 689(2):219-29. PubMed ID: 7115708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic energy of curvature-driven bump formation on red blood cell membrane.
    Waugh RE
    Biophys J; 1996 Feb; 70(2):1027-35. PubMed ID: 8789121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the bilayer in the shape of the isolated erythrocyte membrane.
    Lange Y; Gough A; Steck TL
    J Membr Biol; 1982; 69(2):113-23. PubMed ID: 7131536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.
    Iglic A; Kralj-Iglic V; Hägerstrand H
    Eur Biophys J; 1998; 27(4):335-9. PubMed ID: 9691462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric manipulation of the membrane lipid bilayer of intact human erythrocytes with phospholipase A, C, or D induces a change in cell shape.
    Fujii T; Tamura A
    J Biochem; 1979 Nov; 86(5):1345-52. PubMed ID: 521437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depletion of membrane skeleton in red blood cell vesicles.
    Iglic A; Svetina S; Zeks B
    Biophys J; 1995 Jul; 69(1):274-9. PubMed ID: 7669905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane bilayer balance and erythrocyte shape: a quantitative assessment.
    Ferrell JE; Lee KJ; Huestis WH
    Biochemistry; 1985 Jun; 24(12):2849-57. PubMed ID: 2990533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic deformation and failure of lipid bilayer membranes containing cholesterol.
    Needham D; Nunn RS
    Biophys J; 1990 Oct; 58(4):997-1009. PubMed ID: 2249000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of membrane lipids and proteins in discocyte-echinocyte and -stomatocyte transformation of erythrocytes.
    Fujii T
    Acta Biol Med Ger; 1981; 40(4-5):361-7. PubMed ID: 7315084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Elasticity of the erythrocyte membrane: overview and attempted explanation based on recent data on the ultrastructure of the membrane skeleton].
    Scheven C; Stibenz D
    Gegenbaurs Morphol Jahrb; 1983; 129(3):287-98. PubMed ID: 6350099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of the lipid bilayer from the membrane skeleton during discocyte-echinocyte transformation of human erythrocyte ghosts.
    Liu SC; Derick LH; Duquette MA; Palek J
    Eur J Cell Biol; 1989 Aug; 49(2):358-65. PubMed ID: 2776779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human erythrocyte membrane skeleton may be an ionic gel. III. Micropipette aspiration of unswollen erythrocytes.
    Stokke BT; Mikkelsen A; Elgsaeter A
    J Theor Biol; 1986 Nov; 123(2):205-11. PubMed ID: 3626588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic properties of the red blood cell membrane that determine echinocyte deformability.
    Kuzman D; Svetina S; Waugh RE; Zeks B
    Eur Biophys J; 2004 Feb; 33(1):1-15. PubMed ID: 13680208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells.
    Hwang WC; Waugh RE
    Biophys J; 1997 Jun; 72(6):2669-78. PubMed ID: 9168042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane skeleton and red blood cell vesiculation at low pH.
    Bobrowska-Hägerstrand M; Hägerstrand H; Iglic A
    Biochim Biophys Acta; 1998 Apr; 1371(1):123-8. PubMed ID: 9565664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.