BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37094505)

  • 1. Inorganic polyphosphate accumulation protects a marine, filamentous cyanobacterium, Anabaena torulosa against uranium toxicity.
    Chandwadkar P; Acharya C
    J Environ Radioact; 2023 Jul; 263():107185. PubMed ID: 37094505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual Versatility of the Filamentous, Diazotrophic Cyanobacterium Anabaena torulosa Revealed for Its Survival during Prolonged Uranium Exposure.
    Acharya C; Chandwadkar P; Nayak C
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of uranium with a filamentous, heterocystous, nitrogen-fixing cyanobacterium, Anabaena torulosa.
    Acharya C; Chandwadkar P; Apte SK
    Bioresour Technol; 2012 Jul; 116():290-4. PubMed ID: 22522016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel surface associated polyphosphate bodies sequester uranium in the filamentous, marine cyanobacterium, Anabaena torulosa.
    Acharya C; Apte SK
    Metallomics; 2013 Dec; 5(12):1595-8. PubMed ID: 23912813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic polyphosphate metabolism in cyanobacteria responding to phosphorus availability.
    Li J; Dittrich M
    Environ Microbiol; 2019 Feb; 21(2):572-583. PubMed ID: 30474918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the interactions of cyanobacteria with uranium.
    Acharya C; Apte SK
    Photosynth Res; 2013 Nov; 118(1-2):83-94. PubMed ID: 24101170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of uranium with polyphosphate.
    Vazquez GJ; Dodge CJ; Francis AJ
    Chemosphere; 2007 Dec; 70(2):263-9. PubMed ID: 17673274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyphosphate accumulation dynamics in a population of Synechocystis sp. PCC 6803 cells under phosphate overplus.
    Voronkov A; Sinetova M
    Protoplasma; 2019 Jul; 256(4):1153-1164. PubMed ID: 30972564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of uranium exposure on marine yeast, Yarrowia lipolytica: Insights into the yeast strategies to withstand uranium stress.
    Kolhe N; Zinjarde S; Acharya C
    J Hazard Mater; 2020 Jan; 381():121226. PubMed ID: 31557712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism.
    Renninger N; Knopp R; Nitsche H; Clark DS; Keasling JD
    Appl Environ Microbiol; 2004 Dec; 70(12):7404-12. PubMed ID: 15574942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation.
    Kulkarni S; Misra CS; Gupta A; Ballal A; Apte SK
    Appl Environ Microbiol; 2016 Aug; 82(16):4965-74. PubMed ID: 27287317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic polyphosphate in mitochondria of Saccharomyces cerevisiae at phosphate limitation and phosphate excess.
    Pestov NA; Kulakovskaya TV; Kulaev IS
    FEMS Yeast Res; 2004 Mar; 4(6):643-8. PubMed ID: 15040953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/75042.
    Acharya C; Joseph D; Apte SK
    Bioresour Technol; 2009 Apr; 100(7):2176-81. PubMed ID: 19070485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium.
    Panda B; Basu B; Acharya C; Rajaram H; Apte SK
    Aquat Toxicol; 2017 Jan; 182():205-213. PubMed ID: 27940385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of cyanobacterial mats to ambient phosphate fluctuations: phosphorus cycling, polyphosphate accumulation and stoichiometric flexibility.
    Jentzsch L; Grossart HP; Plewe S; Schulze-Makuch D; Goldhammer T
    ISME Commun; 2023 Jan; 3(1):6. PubMed ID: 36697704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of polyphosphate dynamics in the widespread freshwater diatom Achnanthidium minutissimum under varying phosphorus supplies.
    Lapointe A; Kocademir M; Bergman P; Ragupathy IC; Laumann M; Underwood GJC; Zumbusch A; Spiteller D; Kroth PG
    J Phycol; 2024 Jun; 60(3):624-638. PubMed ID: 38163284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetically validated approach for detecting inorganic polyphosphates in plants.
    Zhu J; Loubéry S; Broger L; Zhang Y; Lorenzo-Orts L; Utz-Pugin A; Fernie AR; Young-Tae C; Hothorn M
    Plant J; 2020 May; 102(3):507-516. PubMed ID: 31816134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Composition and Implications of Polyphosphate-Metal in Enhanced Biological Phosphorus Removal Systems.
    Li Y; Rahman SM; Li G; Fowle W; Nielsen PH; Gu AZ
    Environ Sci Technol; 2019 Feb; 53(3):1536-1544. PubMed ID: 30589545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uranium accumulation and toxicity in the green alga Chlamydomonas reinhardtii is modulated by pH.
    Lavoie M; Sabatier S; Garnier-Laplace J; Fortin C
    Environ Toxicol Chem; 2014 Jun; 33(6):1372-9. PubMed ID: 24596137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotic dissolution of autunite under anaerobic conditions: effect of bicarbonates and Shewanella oneidensis MR1 microbial activity.
    Anagnostopoulos V; Katsenovich Y; Lee B; Lee HM
    Environ Geochem Health; 2020 Aug; 42(8):2547-2556. PubMed ID: 31858357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.