These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37094579)

  • 1. A comparative study of conventional FRET and light harvesting properties of Rh-110/Rh-6G and Rh-19/Rh-B organic dye pairs impregnated in sol-gel glasses.
    Mahato KD; Kumar U
    Methods Appl Fluoresc; 2023 May; 11(3):. PubMed ID: 37094579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Zinc oxide nanoparticle on Fluorescence Resonance Energy transfer between Fluorescein and Rhodamine 6G.
    Saha J; Roy AD; Dey D; Bhattacharjee D; Paul PK; Das R; Hussain SA
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():110-116. PubMed ID: 28024244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of spectroscopic and lasing properties of different types of sol-gel glass matrices containing Rh-6G.
    Deshpande AV; Rane JR; Jathar LV
    J Fluoresc; 2009 Nov; 19(6):1083-93. PubMed ID: 19562470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotion of Förster resonance energy transfer in a saponite clay containing luminescent polyhedral oligomeric silsesquioxane and rhodamine dye.
    Olivero F; Carniato F; Bisio C; Marchese L
    Chem Asian J; 2014 Jan; 9(1):158-65. PubMed ID: 24124165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smartphone-assisted detection of nucleic acids by light-harvesting FRET-based nanoprobe.
    Severi C; Melnychuk N; Klymchenko AS
    Biosens Bioelectron; 2020 Nov; 168():112515. PubMed ID: 32862092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of polymer microenvironment on excitation energy migration and transfer.
    Misra V; Mishra H
    J Phys Chem B; 2008 Apr; 112(14):4213-22. PubMed ID: 18348559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of FRET efficiency on distance in single donor-acceptor pairs.
    Osad'ko IS
    J Chem Phys; 2015 Mar; 142(12):125102. PubMed ID: 25833609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscopic FRET Antenna Materials by Self-Assembling Iridium(III) Complexes and BODIPY Dyes.
    Bagnall AJ; Santana Vega M; Martinelli J; Djanashvili K; Cucinotta F
    Chemistry; 2018 Aug; 24(46):11992-11999. PubMed ID: 29969162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer studies in binary dye solution mixtures: Acriflavine+Rhodamine 6G and Acriflavine+Rhodamine B.
    Sahare PD; Sharma VK; Mohan D; Rupasov AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1257-64. PubMed ID: 17765006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
    Spillmann CM; Ancona MG; Buckhout-White S; Algar WR; Stewart MH; Susumu K; Huston AL; Goldman ER; Medintz IL
    ACS Nano; 2013 Aug; 7(8):7101-18. PubMed ID: 23844838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer in microemulsions composed of tripled-chain surface active ionic liquids, RTILs, and biological solvent: an excitation wavelength dependence study.
    Banerjee C; Kundu N; Ghosh S; Mandal S; Kuchlyan J; Sarkar N
    J Phys Chem B; 2013 Aug; 117(32):9508-17. PubMed ID: 23865472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimode laser emission from dye doped polymer optical fiber.
    Sheeba M; Thomas KJ; Rajesh M; Nampoori VP; Vallabhan CP; Radhakrishnan P
    Appl Opt; 2007 Nov; 46(33):8089-94. PubMed ID: 18026548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of fluorescence resonance energy transfer in zwitterionic micelle: ionic-liquid-induced changes in FRET parameters.
    Rao VG; Mandal S; Ghosh S; Banerjee C; Sarkar N
    J Phys Chem B; 2012 Oct; 116(39):12021-9. PubMed ID: 22970931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of NaCl on ESPT-mediated FRET in a CTAC micelle: a femtosecond and FCS study.
    Mandal AK; Ghosh S; Das AK; Mondal T; Bhattacharyya K
    Chemphyschem; 2013 Mar; 14(4):788-96. PubMed ID: 23143825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step FRET mediated metal ion induced signalling responses in a probe appended with three fluorophores.
    Biswal B; Pal A; Bag B
    Dalton Trans; 2017 Jul; 46(28):8975-8991. PubMed ID: 28650498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probe-location dependent resonance energy transfer at lipid/water interfaces: comparison between the gel- and fluid-phase of lipid bilayer.
    Singh MK; Khan MF; Shweta H; Sen S
    Phys Chem Chem Phys; 2017 Oct; 19(38):25870-25885. PubMed ID: 28726898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-Free Estimation of Energy-Transfer Timescales in a Closely Emitting CdSe/ZnS Quantum Dot and Rhodamine 6G FRET Couple.
    Bharadwaj K; Koley S; Jana S; Ghosh S
    Chem Asian J; 2018 Nov; 13(21):3296-3303. PubMed ID: 30178522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration-Dependent Emission of Annealed Sol-Gel Layers Incorporated with Rhodamine 19 and 6G as the Route to Tunable High-Temperature Luminescent Materials.
    Zdończyk M; Potaniec B; Fiedot-Toboła M; Baraniecki T; Cybińska J
    Gels; 2022 Jun; 8(7):. PubMed ID: 35877493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.