BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37094626)

  • 1. Origin, synchronization, and propagation of sleep slow waves in children.
    Castelnovo A; Lividini A; Riedner BA; Avvenuti G; Jones SG; Miano S; Tononi G; Manconi M; Bernardi G
    Neuroimage; 2023 Jul; 274():120133. PubMed ID: 37094626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrity of Corpus Callosum Is Essential for theCross-Hemispheric Propagation of Sleep Slow Waves:A High-Density EEG Study in Split-Brain Patients.
    Avvenuti G; Handjaras G; Betta M; Cataldi J; Imperatori LS; Lattanzi S; Riedner BA; Pietrini P; Ricciardi E; Tononi G; Siclari F; Polonara G; Fabri M; Silvestrini M; Bellesi M; Bernardi G
    J Neurosci; 2020 Jul; 40(29):5589-5603. PubMed ID: 32541070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Across-night dynamics in traveling sleep slow waves throughout childhood.
    Schoch SF; Riedner BA; Deoni SC; Huber R; LeBourgeois MK; Kurth S
    Sleep; 2018 Nov; 41(11):. PubMed ID: 30169809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.
    Spiess M; Bernardi G; Kurth S; Ringli M; Wehrle FM; Jenni OG; Huber R; Siclari F
    Neuroimage; 2018 Sep; 178():23-35. PubMed ID: 29758338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans.
    Riedner BA; Vyazovskiy VV; Huber R; Massimini M; Esser S; Murphy M; Tononi G
    Sleep; 2007 Dec; 30(12):1643-57. PubMed ID: 18246974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturation-dependent changes in cortical and thalamic activity during sleep slow waves: Insights from a combined EEG-fMRI study.
    Bergamo D; Handjaras G; Petruso F; Talami F; Ricciardi E; Benuzzi F; Vaudano AE; Meletti S; Bernardi G; Betta M
    Sleep Med; 2024 Jan; 113():357-369. PubMed ID: 38113618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical and subcortical hemodynamic changes during sleep slow waves in human light sleep.
    Betta M; Handjaras G; Leo A; Federici A; Farinelli V; Ricciardi E; Siclari F; Meletti S; Ballotta D; Benuzzi F; Bernardi G
    Neuroimage; 2021 Aug; 236():118117. PubMed ID: 33940148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior.
    Ringli M; Huber R
    Prog Brain Res; 2011; 193():63-82. PubMed ID: 21854956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epileptic interictal discharges are more frequent during NREM slow wave downstates.
    Ujma PP; Halász P; Kelemen A; Fabó D; Erőss L
    Neurosci Lett; 2017 Sep; 658():37-42. PubMed ID: 28811195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of corpus callosum in sleep spindle synchronization and coupling with slow waves.
    Bernardi G; Avvenuti G; Cataldi J; Lattanzi S; Ricciardi E; Polonara G; Silvestrini M; Siclari F; Fabri M; Bellesi M
    Brain Commun; 2021; 3(2):fcab108. PubMed ID: 34164621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased cortical involvement and synchronization during CAP A1 slow waves.
    Ujma PP; Halász P; Simor P; Fabó D; Ferri R
    Brain Struct Funct; 2018 Nov; 223(8):3531-3542. PubMed ID: 29951916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex propagation patterns characterize human cortical activity during slow-wave sleep.
    Hangya B; Tihanyi BT; Entz L; Fabó D; Erőss L; Wittner L; Jakus R; Varga V; Freund TF; Ulbert I
    J Neurosci; 2011 Jun; 31(24):8770-9. PubMed ID: 21677161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local Differences in Computational Sleep Depth Parameters in Healthy School-aged Children.
    Himanen SL; Huupponen E; Jussila M; Lapinlampi AM; Saarenpää-Heikkilä O
    Clin EEG Neurosci; 2017 Nov; 48(6):393-402. PubMed ID: 28679286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different Effects of Sleep Deprivation and Torpor on EEG Slow-Wave Characteristics in Djungarian Hamsters.
    Vyazovskiy VV; Palchykova S; Achermann P; Tobler I; Deboer T
    Cereb Cortex; 2017 Feb; 27(2):950-961. PubMed ID: 28168294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves.
    Esser SK; Hill SL; Tononi G
    Sleep; 2007 Dec; 30(12):1617-30. PubMed ID: 18246972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat.
    Vyazovskiy VV; Riedner BA; Cirelli C; Tononi G
    Sleep; 2007 Dec; 30(12):1631-42. PubMed ID: 18246973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study.
    Siclari F; Bernardi G; Riedner BA; LaRocque JJ; Benca RM; Tononi G
    Sleep; 2014 Oct; 37(10):1621-37. PubMed ID: 25197810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.
    Funk CM; Peelman K; Bellesi M; Marshall W; Cirelli C; Tononi G
    J Neurosci; 2017 Sep; 37(38):9132-9148. PubMed ID: 28821651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Density Electroencephalographic Recordings During Sleep in Children and Adolescents With Acquired Brain Injury.
    Mouthon AL; Meyer-Heim A; Kurth S; Ringli M; Pugin F; van Hedel HJA; Huber R
    Neurorehabil Neural Repair; 2017 May; 31(5):462-474. PubMed ID: 28162033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.