These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37095100)

  • 1. Femtosecond-precision electronic clock distribution in CMOS chips by injecting frequency comb-extracted photocurrent pulses.
    Hyun M; Chung H; Na W; Kim J
    Nat Commun; 2023 Apr; 14(1):2345. PubMed ID: 37095100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attosecond electronic timing with rising edges of photocurrent pulses.
    Hyun M; Ahn C; Na Y; Chung H; Kim J
    Nat Commun; 2020 Jul; 11(1):3667. PubMed ID: 32699211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband noise limit in the photodetection of ultralow jitter optical pulses.
    Sun W; Quinlan F; Fortier TM; Deschenes JD; Fu Y; Diddams SA; Campbell JC
    Phys Rev Lett; 2014 Nov; 113(20):203901. PubMed ID: 25432042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters.
    Karnetzky C; Zimmermann P; Trummer C; Duque Sierra C; Wörle M; Kienberger R; Holleitner A
    Nat Commun; 2018 Jun; 9(1):2471. PubMed ID: 29941975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Multipurpose Photonic Chip Architecture for THz Dual-Comb Spectrometers.
    Betancur-Pérez A; Martín-Mateos P; Dios C; Acedo P
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithic piezoelectric control of soliton microcombs.
    Liu J; Tian H; Lucas E; Raja AS; Lihachev G; Wang RN; He J; Liu T; Anderson MH; Weng W; Bhave SA; Kippenberg TJ
    Nature; 2020 Jul; 583(7816):385-390. PubMed ID: 32669694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passion for precision.
    Hänsch TW
    Chemphyschem; 2006 Jun; 7(6):1170-87. PubMed ID: 16637090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthogonalizing the control of frequency combs for optical clockworks.
    Bourbeau Hébert N; Scholten SK; Hilton AP; Offer RF; Perrella C; Luiten AN
    Opt Lett; 2021 Oct; 46(19):4972-4975. PubMed ID: 34598246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow-jitter, 1550-nm mode-locked semiconductor laser synchronized to a visible optical frequency standard.
    Jones DJ; Holman KW; Notcutt M; Ye J; Chandalia J; Jiang LA; Ippen EP; Yokoyama H
    Opt Lett; 2003 May; 28(10):813-5. PubMed ID: 12779155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research of 100 MHz ultra-low-jitter clock generating circuit.
    Qiu D; Tan F; Tian S; Zeng H; Ye P
    Rev Sci Instrum; 2015 Apr; 86(4):044704. PubMed ID: 25933877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies.
    Jones DJ; Diddams SA; Taubman MS; Cundiff ST; Ma LS; Hall JL
    Opt Lett; 2000 Mar; 25(5):308-10. PubMed ID: 18059863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon-chip mid-infrared frequency comb generation.
    Griffith AG; Lau RK; Cardenas J; Okawachi Y; Mohanty A; Fain R; Lee YH; Yu M; Phare CT; Poitras CB; Gaeta AL; Lipson M
    Nat Commun; 2015 Feb; 6():6299. PubMed ID: 25708922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency ratio of the
    Zhang C; Ooi T; Higgins JS; Doyle JF; von der Wense L; Beeks K; Leitner A; Kazakov GA; Li P; Thirolf PG; Schumm T; Ye J
    Nature; 2024 Sep; 633(8028):63-70. PubMed ID: 39232152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A broadband chip-scale optical frequency synthesizer at 2.7 × 10(-16) relative uncertainty.
    Huang SW; Yang J; Yu M; McGuyer BH; Kwong DL; Zelevinsky T; Wong CW
    Sci Adv; 2016 Apr; 2(4):e1501489. PubMed ID: 27152341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator.
    Xiao S; Hollberg L; Newbury NR; Diddams SA
    Opt Express; 2008 Jun; 16(12):8498-508. PubMed ID: 18545564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator.
    Zhang M; Buscaino B; Wang C; Shams-Ansari A; Reimer C; Zhu R; Kahn JM; Lončar M
    Nature; 2019 Apr; 568(7752):373-377. PubMed ID: 30858615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optical clock based on a single trapped 199Hg+ ion.
    Diddams SA; Udem T; Bergquist JC; Curtis EA; Drullinger RE; Hollberg L; Itano WM; Lee WD; Oates CW; Vogel KR; Wineland DJ
    Science; 2001 Aug; 293(5531):825-8. PubMed ID: 11452082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Technique progress of high-precision gas absorption spectroscopy with femtosecond optical frequency comb].
    Yang HL; Wei HY; Li Y; Ren LB; Zhang HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):335-9. PubMed ID: 24822396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elimination of pump-induced frequency jitter on fiber-laser frequency combs.
    McFerran JJ; Swann WC; Washburn BR; Newbury NR
    Opt Lett; 2006 Jul; 31(13):1997-9. PubMed ID: 16770411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.
    Abdulrazzaq BI; Abdul Halin I; Kawahito S; Sidek RM; Shafie S; Yunus NA
    Springerplus; 2016; 5():434. PubMed ID: 27104122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.