These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37095540)

  • 21. AI-PUCMDL: artificial intelligence assisted plant counting through unmanned aerial vehicles in India's mountainous regions.
    Thakur D; Srinivasan S
    Environ Monit Assess; 2024 Apr; 196(4):406. PubMed ID: 38561525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography.
    Wu J; Wen S; Lan Y; Yin X; Zhang J; Ge Y
    Plant Methods; 2022 Dec; 18(1):129. PubMed ID: 36482426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Field rice panicle detection and counting based on deep learning.
    Wang X; Yang W; Lv Q; Huang C; Liang X; Chen G; Xiong L; Duan L
    Front Plant Sci; 2022; 13():966495. PubMed ID: 36035660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient RGB-UAV-based platform for field almond tree phenotyping: 3-D architecture and flowering traits.
    López-Granados F; Torres-Sánchez J; Jiménez-Brenes FM; Arquero O; Lovera M; de Castro AI
    Plant Methods; 2019; 15():160. PubMed ID: 31889984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic Detection and Counting of Wheat Spikelet Using Semi-Automatic Labeling and Deep Learning.
    Qiu R; He Y; Zhang M
    Front Plant Sci; 2022; 13():872555. PubMed ID: 35707612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seedling maize counting method in complex backgrounds based on YOLOV5 and Kalman filter tracking algorithm.
    Li Y; Bao Z; Qi J
    Front Plant Sci; 2022; 13():1030962. PubMed ID: 36420032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images.
    Sebai M; Wang X; Wang T
    Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wheat ear counting using K-means clustering segmentation and convolutional neural network.
    Xu X; Li H; Yin F; Xi L; Qiao H; Ma Z; Shen S; Jiang B; Ma X
    Plant Methods; 2020; 16():106. PubMed ID: 32782453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform.
    Zhou C; Ye H; Hu J; Shi X; Hua S; Yue J; Xu Z; Yang G
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TasselLFANet: a novel lightweight multi-branch feature aggregation neural network for high-throughput image-based maize tassels detection and counting.
    Yu Z; Ye J; Li C; Zhou H; Li X
    Front Plant Sci; 2023; 14():1158940. PubMed ID: 37123842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Convolutional Neural Network-Based Method for Corn Stand Counting in the Field.
    Wang L; Xiang L; Tang L; Jiang H
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Framework for Single-Panicle Litchi Flower Counting by Regression with Multitask Learning.
    Lin J; Li J; Ma Z; Li C; Huang G; Lu H
    Plant Phenomics; 2024; 6():0172. PubMed ID: 38629081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.
    Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T
    Plant Methods; 2019; 15():17. PubMed ID: 30828356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using computer vision, image analysis and UAVs for the automatic recognition and counting of common cranes (Grus grus).
    Chen A; Jacob M; Shoshani G; Charter M
    J Environ Manage; 2023 Feb; 328():116948. PubMed ID: 36516707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oriented feature pyramid network for small and dense wheat heads detection and counting.
    Yu J; Chen W; Liu N; Fan C
    Sci Rep; 2024 Apr; 14(1):8106. PubMed ID: 38582913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.