These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37095586)

  • 1. Model integrating CT-based radiomics and genomics for survival prediction in esophageal cancer patients receiving definitive chemoradiotherapy.
    Cui J; Li L; Liu N; Hou W; Dong Y; Yang F; Zhu S; Li J; Yuan S
    Biomark Res; 2023 Apr; 11(1):44. PubMed ID: 37095586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CT-based radiomics combined with hematologic parameters for survival prediction in locally advanced esophageal cancer patients receiving definitive chemoradiotherapy.
    Cui J; Zhang D; Gao Y; Duan J; Wang L; Li L; Yuan S
    Insights Imaging; 2024 Mar; 15(1):87. PubMed ID: 38523188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of an [
    Takahashi N; Tanaka S; Umezawa R; Takanami K; Takeda K; Yamamoto T; Suzuki Y; Katsuta Y; Kadoya N; Jingu K
    Acta Oncol; 2023 Feb; 62(2):159-165. PubMed ID: 36794365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CT radiomics features of meso-esophageal fat in predicting overall survival of patients with locally advanced esophageal squamous cell carcinoma treated by definitive chemoradiotherapy.
    Yan S; Li FP; Jian L; Zhu HT; Zhao B; Li XT; Shi YJ; Sun YS
    BMC Cancer; 2023 May; 23(1):477. PubMed ID: 37231388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel model integrating computed tomography-based image markers with genetic markers for discriminating radiation pneumonitis in patients with unresectable stage III non-small cell lung cancer receiving radiotherapy: a retrospective multi-center radiogenomics study.
    Li J; Li L; Tang S; Yu Q; Liu W; Liu N; Yang F; Zhang D; Yuan S
    BMC Cancer; 2024 Jan; 24(1):78. PubMed ID: 38225543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer.
    Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH
    Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiogenomics models for predicting prognosis in locally advanced non-small cell lung cancer patients undergoing definitive chemoradiotherapy.
    Song X; Li L; Yu Q; Liu N; Zhu S; Yuan S
    Transl Lung Cancer Res; 2024 Aug; 13(8):1828-1840. PubMed ID: 39263037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of spleen radiomics model for predicting prognosis in esophageal squamous cell carcinoma patients receiving definitive radiotherapy.
    Guo L; Liu A; Geng X; Zhao Z; Nie Y; Wang L; Liu D; Li Y; Li Y; Li D; Wang Q; Li Z; Liu X; Li M
    Thorac Cancer; 2024 Apr; 15(12):947-964. PubMed ID: 38480505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a radiomics-based model to predict local progression-free survival after chemo-radiotherapy in patients with esophageal squamous cell cancer.
    Luo HS; Chen YY; Huang WZ; Wu SX; Huang SF; Xu HY; Xue RL; Du ZS; Li XY; Lin LX; Huang HC
    Radiat Oncol; 2021 Oct; 16(1):201. PubMed ID: 34641928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures.
    Cui Y; Li Z; Xiang M; Han D; Yin Y; Ma C
    Radiat Oncol; 2022 Dec; 17(1):212. PubMed ID: 36575480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer.
    Kawahara D; Nishioka R; Murakami Y; Emoto Y; Iwashita K; Sasaki R
    Eur J Surg Oncol; 2024 Jul; 50(7):108450. PubMed ID: 38843660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of CT radiomic features combined with clinical factors in predicting prognosis in patients with limited-stage small cell lung cancer.
    Wu J; Zhou Y; Xu C; Yang C; Liu B; Zhao L; Song J; Wang W; Yang Y; Liu N
    BMC Cancer; 2024 Feb; 24(1):170. PubMed ID: 38310283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiomics models based on CT at different phases predicting lymph node metastasis of esophageal squamous cell carcinoma (GASTO-1089).
    Peng G; Zhan Y; Wu Y; Zeng C; Wang S; Guo L; Liu W; Luo L; Wang R; Huang K; Huang B; Chen J; Chen C
    Front Oncol; 2022; 12():988859. PubMed ID: 36387160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A prognostic nomogram for T3N0M0 esophageal squamous cell carcinoma patients undergoing radical surgery based on computed tomography radiomics and inflammatory nutritional biomarkers.
    Ma H; Liu Y; Ye H; Gao F; Qin S
    J Appl Clin Med Phys; 2024 Nov; 25(11):e14504. PubMed ID: 39241166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Locoregional Recurrence-Free Survival of Oesophageal Squamous Cell Carcinoma After Chemoradiotherapy Based on an Enhanced CT-Based Radiomics Model.
    Kong J; Zhu S; Shi G; Liu Z; Zhang J; Ren J
    Front Oncol; 2021; 11():739933. PubMed ID: 34631575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Radiomics Nomogram Model for Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved pCR After Neoadjuvant Chemoradiotherapy Followed by Surgery.
    Qiu Q; Duan J; Deng H; Han Z; Gu J; Yue NJ; Yin Y
    Front Oncol; 2020; 10():1398. PubMed ID: 32850451
    [No Abstract]   [Full Text] [Related]  

  • 17. Radiomics Analysis of PET and CT Components of
    Wang X; Lu Z
    Front Oncol; 2021; 11():638124. PubMed ID: 33928029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Validation of an
    Huang J; Li T; Tang L; Hu Y; Hu Y; Gu Y
    Acad Radiol; 2024 Dec; 31(12):5066-5077. PubMed ID: 38845294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma.
    Wang JL; Tang LS; Zhong X; Wang Y; Feng YJ; Zhang Y; Liu JY
    Front Immunol; 2024; 15():1405146. PubMed ID: 38947338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computed tomography-based radiomic analysis for prediction of treatment response to salvage chemoradiotherapy for locoregional lymph node recurrence after curative esophagectomy.
    Gu L; Liu Y; Guo X; Tian Y; Ye H; Zhou S; Gao F
    J Appl Clin Med Phys; 2021 Nov; 22(11):71-79. PubMed ID: 34614265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.