These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37095631)

  • 21. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning signals from the superior colliculus for adaptation of saccadic eye movements in the monkey.
    Kaku Y; Yoshida K; Iwamoto Y
    J Neurosci; 2009 Apr; 29(16):5266-75. PubMed ID: 19386923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands.
    Kasap B; van Opstal AJ
    Biol Cybern; 2017 Aug; 111(3-4):249-268. PubMed ID: 28528360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discharge properties of monkey tectoreticular neurons.
    Rodgers CK; Munoz DP; Scott SH; Paré M
    J Neurophysiol; 2006 Jun; 95(6):3502-11. PubMed ID: 16641382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blink perturbation effects on saccades evoked by microstimulation of the superior colliculus.
    Katnani HA; Van Opstal AJ; Gandhi NJ
    PLoS One; 2012; 7(12):e51843. PubMed ID: 23251639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Saccades to somatosensory targets. II. motor convergence in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):428-38. PubMed ID: 8822568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Further evidence that a shared efferent collicular pathway drives separate circuits for smooth eye movements and saccades.
    Missal M; Coimbra A; Lefèvre P; Olivier E
    Exp Brain Res; 2002 Dec; 147(3):344-52. PubMed ID: 12428142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Saccade-related neurons in cat superior colliculus: pandirectional movement cells with postsaccadic responses.
    Peck CK
    J Neurophysiol; 1984 Dec; 52(6):1154-68. PubMed ID: 6520629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A quantitative analysis of the correlations between eye movements and neural activity in the pretectum.
    Missal M; Coimbra A; Lefèvre P; Olivier E
    Exp Brain Res; 2002 Apr; 143(3):373-82. PubMed ID: 11889515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous auditory stimuli shorten saccade latencies.
    Konrad HR; Rea C; Olin B; Colliver J
    Laryngoscope; 1989 Dec; 99(12):1230-2. PubMed ID: 2601535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linear visuomotor transformations in midbrain superior colliculus control saccadic eye-movements.
    van der Willigen RF; Goossens HH; van Opstal AJ
    J Integr Neurosci; 2011 Sep; 10(3):277-301. PubMed ID: 21960304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between natural and electrically evoked saccades. III. Is the nonstationarity the result of an integrator not instantaneously reset?
    Schlag J; Pouget A; Sadeghpour S; Schlag-Rey M
    J Neurophysiol; 1998 Feb; 79(2):903-10. PubMed ID: 9463451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensorimotor integration in the primate superior colliculus. I. Motor convergence.
    Jay MF; Sparks DL
    J Neurophysiol; 1987 Jan; 57(1):22-34. PubMed ID: 3559673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata.
    Hikosaka O; Wurtz RH
    J Neurophysiol; 1985 Jan; 53(1):292-308. PubMed ID: 2983038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades.
    Everling S; Dorris MC; Klein RM; Munoz DP
    J Neurosci; 1999 Apr; 19(7):2740-54. PubMed ID: 10087086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey.
    Schiller PH; Sandell JH; Maunsell JH
    J Neurophysiol; 1987 Apr; 57(4):1033-49. PubMed ID: 3585453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Change in sensitivity to visual error in superior colliculus during saccade adaptation.
    Kojima Y; Soetedjo R
    Sci Rep; 2017 Aug; 7(1):9566. PubMed ID: 28852092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the frequency response of the saccadic circuit: system behavior.
    Gnadt JW; Jackson ME; Litvak O
    J Neurophysiol; 2001 Aug; 86(2):724-40. PubMed ID: 11495946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multielectrode evidence for spreading activity across the superior colliculus movement map.
    Port NL; Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Jul; 84(1):344-57. PubMed ID: 10899209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.