These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 37095948)
21. 3D Printing Magnetic Actuators for Biomimetic Applications. Cao X; Xuan S; Sun S; Xu Z; Li J; Gong X ACS Appl Mater Interfaces; 2021 Jun; 13(25):30127-30136. PubMed ID: 34137263 [TBL] [Abstract][Full Text] [Related]
22. Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics. Deo KA; Jaiswal MK; Abasi S; Lokhande G; Bhunia S; Nguyen TU; Namkoong M; Darvesh K; Guiseppi-Elie A; Tian L; Gaharwar AK ACS Nano; 2022 Jun; 16(6):8798-8811. PubMed ID: 35675588 [TBL] [Abstract][Full Text] [Related]
23. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel. Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434 [TBL] [Abstract][Full Text] [Related]
24. Electro and magnetoactive printed bi-functional actuators based on alginate hybrid hydrogels. Maiz-Fernández S; Pérez-Álvarez L; de Munain-Arroniz IL; Zoco A; Lopes AC; Silván U; Salazar D; Vilas-Vilela JL; Lanceros-Mendez S Int J Biol Macromol; 2022 Oct; 219():374-383. PubMed ID: 35914555 [TBL] [Abstract][Full Text] [Related]
25. 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles. Ko ES; Kim C; Choi Y; Lee KY Carbohydr Polym; 2020 Oct; 245():116496. PubMed ID: 32718609 [TBL] [Abstract][Full Text] [Related]
26. Reactive 3D Printing of Shape-Programmable Liquid Crystal Elastomer Actuators. Barnes M; Sajadi SM; Parekh S; Rahman MM; Ajayan PM; Verduzco R ACS Appl Mater Interfaces; 2020 Jun; 12(25):28692-28699. PubMed ID: 32484325 [TBL] [Abstract][Full Text] [Related]
27. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications. Munoz-Perez E; Perez-Valle A; Igartua M; Santos-Vizcaino E; Hernandez RM Biomater Adv; 2023 Jun; 149():213414. PubMed ID: 37031611 [TBL] [Abstract][Full Text] [Related]
28. Printing ferromagnetic domains for untethered fast-transforming soft materials. Kim Y; Yuk H; Zhao R; Chester SA; Zhao X Nature; 2018 Jun; 558(7709):274-279. PubMed ID: 29899476 [TBL] [Abstract][Full Text] [Related]
29. Photoredox-Mediated Designing and Regulating Metal-Coordinate Hydrogels for Programmable Soft 3D-Printed Actuators. Lu Z; Sun L; Liu J; Wei H; Zhang P; Yu Y ACS Macro Lett; 2022 Aug; 11(8):967-974. PubMed ID: 35830546 [TBL] [Abstract][Full Text] [Related]
30. Digital light processing 3D printing of dynamic magneto-responsive thiol-acrylate composites. Cazin I; Rossegger E; Roppolo I; Sangermano M; Granitzer P; Rumpf K; Schlögl S RSC Adv; 2023 Jun; 13(26):17536-17544. PubMed ID: 37304810 [TBL] [Abstract][Full Text] [Related]
31. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks. Yuk H; Zhao X Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049 [TBL] [Abstract][Full Text] [Related]
32. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions. Shahbazi M; Jäger H; Ahmadi SJ; Lacroix M Carbohydr Polym; 2020 Jul; 240():116211. PubMed ID: 32475544 [TBL] [Abstract][Full Text] [Related]
33. Vat Photopolymerization 3D Printing of Hydrogels with Re-Adjustable Swelling. Liz-Basteiro P; Reviriego F; Martínez-Campos E; Reinecke H; Elvira C; Rodríguez-Hernández J; Gallardo A Gels; 2023 Jul; 9(8):. PubMed ID: 37623055 [TBL] [Abstract][Full Text] [Related]
34. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
35. Physico-Chemical Challenges in 3D Printing of Polymeric Nanocomposites and Hydrogels for Biomedical Applications. Bonini M J Nanosci Nanotechnol; 2021 May; 21(5):2778-2792. PubMed ID: 33653443 [TBL] [Abstract][Full Text] [Related]
36. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting. Hsiao SH; Hsu SH ACS Appl Mater Interfaces; 2018 Sep; 10(35):29273-29287. PubMed ID: 30133249 [TBL] [Abstract][Full Text] [Related]
38. 4D Printing of Ultrastretchable Magnetoactive Soft Material Architectures for Soft Actuators. Wajahat M; Kim JH; Kim JH; Jung ID; Pyo J; Seol SK ACS Appl Mater Interfaces; 2023 Dec; 15(51):59582-59591. PubMed ID: 38100363 [TBL] [Abstract][Full Text] [Related]
39. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy. Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448 [TBL] [Abstract][Full Text] [Related]
40. Extrusion 3D Printing of Polymeric Materials with Advanced Properties. Jiang Z; Diggle B; Tan ML; Viktorova J; Bennett CW; Connal LA Adv Sci (Weinh); 2020 Sep; 7(17):2001379. PubMed ID: 32999820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]